
00 Getting started L Lab Exercise: Getting started p. 1

00.L Lab Exercise: Getting started

Objective

The objective of this exercise is to get acquainted

with the following.

1. The Eclipse IDE and debugger.

2. Editing, building, loading, and running a

program on the target computer.

3. Setting break points and single-stepping

through a running program.

4. Displaying register and memory contents.

Pre-laboratory preparation

Read Resource 2 and Resource 7, following the

instructions on your personal computer,

preferably a laptop your can bring to lab. Pay

particular attention to procedures for editing,

building, and debugging. The following

laboratory procedure is a tutorial that will allow

you to become familiar with the Eclipse IDE.

Laboratory procedure

Perform this procedure in the lab, either on your

laptop or a lab computer, connected to a

myRIO. Launch Eclipse, Open the main.c file of
your myLab0 project. Edit the file to include the

C code in Figure L.1. Substitute your name for

<your name> (12 characters max). Note the use
of <tab>s and indenting.
Look carefully at this program. The main
program loops four times, calling sumsq each
time. What values do you expect in the x array
after the program has executed?

Use the build command to compile and link

your program. Errors and Warnings are shown

in the Console pane. Correct any errors and

re-build.

00 Getting started L Lab Exercise: Getting started p. 1

Run→Run Configurations the program. Select
your myLab0 project. Click Run. The results will
be printed on the LCD display.

Using the debugger

In the following, you may find it useful to refer

to the outline of important debugger commands

in the Eclipse IDE for myRIO Notes. No

program may be running on the target myRIO

when you start the debugger.

Select Run→Debug Configurations. Select your
myLab0 project. Click Debug. The Debug
perspective opens, showing the source code for

the function main.
At this point, the execution has been suspended

at the line highlighted in the source code.

Notice that the values of the program variables

are displayed in the Variables pane anytime that

execution is suspended. What are the current

values of i and the array x? Notice also that the
values of the processor registers are shown in

the Registers pane.

/* Lab #0 - <your name> */

/* includes */
#include "stdio.h"
#include "MyRio.h"
#include "me477.h"

/* prototypes */
int sumsq(int x); /* sum of squares */

/* definitions */
#define N 4 /* number of loops */

int main(int argc, char **argv) {
NiFpga_Status status;
static int x[10]; /* total */
static int i; /* index */

status = MyRio_Open(); /* Open NiFpga.*/
if (MyRio_IsNotSuccess(status)) return status;

printf_lcd("\fHello, <your name>\n\n");
for (i=0; i<N; i++) {

x[i] = sumsq(i);

00 Getting started L Lab Exercise: Getting started p. 2

printf_lcd("%d, ",x[i]);
}
status = MyRio_Close(); /* Close NiFpga. */
return status;

}
int sumsq(int x) {

static int y=4;

y = y + x*x;
return y;

}

Figure L.1: C code for Lab 00

Executing the Program—You are about to

execute your program from the debugger. Use

the icon to resume execution of your

program. The only indication that your

program has executed will be that your name

and the values of the x-array should be
displayed on the LCD display attached to the

myRIO. Are the results consistent with your

understanding of the program? Explain.

Running to a Breakpoint—A “breakpoint” is an

address in memory where we would like the

processor to stop while we examine or modify

the state of the myRIO and/or memory. The

target processor runs continuously unless it is

stopped at a breakpoint.

Now let’s re-execute the program until the

execution arrives at a specified breakpoint. Start

the debugger again from Debug

Configurations….

Suppose that we want to continue execution

(from the beginning) and determine the values

of x and i just before the first C statement inside

the “for” loop executes for the first time. Set a
breakpoint at the “x[i]=sumsq(i);” statement
by double-clicking on the marker bar next to

that source code line.

A new breakpoint marker appears on the

marker bar, directly to the left of the line where

00 Getting started L Lab Exercise: Getting started p. 3

you added the breakpoint. Also, the new

breakpoint appears in the Breakpoints pane.

Run to the breakpoint using the icon.

The text window should now show execution

suspended at that line. The Variables pane

should now display the new values of x and i.
The window marks in yellow values that have

changed. Are they what you expected?

Finally, (assuming that execution has stopped at

the first “for” loop iteration), cause the
debugger to execute the loop one more time

using the icon. The values of x and i should
be updated in the Variables pane. Are they

what you expected? Try it again. …And again.

…And again! Watch the progress of the

program on the LCD display.

Single-Stepping—The debugger can also step

through the execution of the program in three

ways:

1. “Step Over” Execute the current line,

including any routines, and proceed to the

next statement.

2. “Step Into” Execute the current line,

following execution inside a routine.

3. “Step Return” Execute to the end of the

current routine, then follow execution to

the routine’s caller.

“Step Over” single steps to the next sequential C

statement, but executes through functions, and

out of branches and loops before pausing. For

example, if the next line of code is a call to a

function, pressing will cause the entire

function to be executed and debugger will pause

at the line of code following the function call.

To begin the stepping process the target must be

suspended.

Terminate execution , and then restart the

debugging. Execution will be suspended at the

beginning of the program.

00 Getting started L Lab Exercise: Getting started p. 4

Now, single step from this point using ‘Step

Over” repeatedly. Notice that step

corresponds to a single line of C code. Notice

also that the current values in the Variables

pane change as you step. Watch the progress of

the program on the LCD display. Eventually,

execution exits through the return statement.
Restart the debugging again. This time run to

your breakpoint at “x[i]=sumsq(i);”. Now,
use “Step Into” to follow the execution into

sumsq. Continue stepping using until

execution exits back to main.
Quitting—You may terminate the debugging at

anytime using terminate .

Feel free to repeat these procedures and to try

other commands.

00 Getting started Lab Exercise: Getting started p. 1

Resource R1 High-level embedded system

The Embedded Computing Laboratory (ECL) at

Saint Martin’s University is a space dedicated to

teaching embedded computing in

electromechanical systems. It is hosted by the

Robotics Laboratory and developed in

collaboration with Prof. Joe Garbini of the

Department of Mechanical Engineering at the

University of Washington (UW), to whom credit

for much of the design is owed.

The following description is of the apparatuses

at ECL, which are similar to those at the UW.

The primary differences are that each lab has a

different set of motors and the UW uses a

custom analog amplifier to drive the motor

whereas the ECL uses pulse-width modulation.

The developers of the following content

distribute it in the hopes that others will find it

educational and perhaps useful as a template

for similar laboratories. Furthermore, we hope

students will be able to reference it when they

want to design their own embedded systems.

ECL has four identical systems for student use.

Each system consists of four subsystems:

1. an embedded computer and development

environment subsystem consisting of a

National Instruments myRIO

microcontroller, a personal computer, and

the Eclipse IDE;

2. a user interface hardware subsystem

consisting of a keypad, LCD display, and

associated circuit boards;

3. a motor driver subsystem consisting of a

dc power supply and a pulse-width

modulation motor driver circuit board and

4. a motor and mechanical apparatus

subsystem consisting of a flywheel

supported by bearings and coupled to the

shaft of a dc servomotor (with encoder for

https://www.me.washington.edu/research/faculty/garbini/index.html

00 Getting started Lab Exercise: Getting started p. 2

feedback).

myRIO

term board

proto board

LCD

keypad

driver

motor

flywheel

coupler

bearings

Figure 00.2: top view of most of the ECL apparatus.

Each of these is described in detail in the

following sections. Together, they allow a

student to program the microcontroller (in the C

programming language) to instantiate

completely embedded control of the motor

speed and position, which are set by the user

through the keypad and LCD display.

Figure 00.3: front view of most of the ECL apparatus.

00 Getting started Lab Exercise: Getting started p. 1

Resource R2 Embedded computer and development

environment subsystem

The development system is a powerful and

convenient tool for embedded computing

applications. As shown below, the development

system consists of a personal computer,

connected via a USB cable to target computer.

LCD Display

External
Devices

myRIO
Target
Computer

dual-core ARM
Cortex-A9 processor,
with Xilinx FPGA

Keypad

ApplicationDevelopment System

Figure 00.4:

During the development of an embedded

computing application, the development system

communicates with the real-time Linux

operating system of the myRIO target computer.

The development environment includes an

integrated set of hardware and software tools

that help to debug a microcomputer design by

allowing you to watch your program execute, as

well as to stop it and inspect system variables.

As you will see, it allows you to monitor and

control the target computer, without interfering

with its timing.

Once hardware and software development is

completed, the development system is

disconnected from the target system. In the final

application, the target program resides in ROM

on the target computer.

Getting Started with CDT

Eclipse is an integrated development

environment (IDE). We will use Eclipse through

00 Getting started Lab Exercise: Getting started p. 1

Final Application ...

LCD Display

External
Devices

myRIO
Target
Computer

dual-core ARM
Cortex-A9 processor,
with Xilinx FPGA

Keypad

Figure 00.5:

its C Development Tool (CDT) to create, edit,

build, deploy, and debug C language projects

for the myRIO target computer. Within Eclipse

all of your projects are organized into a single

workspace on your computer. Each project,

along with all of its necessary resources, are

stored in a named project folder.

The outline below describes the basic functions

of the IDE in preparing a C program for

subsequent loading and execution on the

myRIO remote system. Additional features are

described in the Help menu.

Box 00.1 is CDT set up?

If the development PC has not yet been set

up on the development computer, follow

the procedure of Resource 7 to do so,

before continuing.

Begin by starting the Eclipse IDE application.

C/C++ Perspective

Enter the C/C++ Perspective by selecting that

button in the upper right.

The Project The ME 477 C Support for myRIO

archive that you imported into your

Eclipse workspace when you set up the

CDT contains a template project for each

of the nine laboratory exercises this

quarter. They are listed in the right pane

of the C/C++ perspective. Open a project

by double clicking on its folder.

00 Getting started Lab Exercise: Getting started p. 2

Each C program consists of a collection of

functions, one of which must be called

main{}, and is executed first. For large
projects, additional functions are often in

separate files. However, the organization

of the assignments in this class is such that

all of the functions for a single assignment

can be conveniently stored in main.c
along with main{}.

Run and Debug Configurations Among

other things, Run and Debug

Configurations specify how the project

will be stored on the remote target.

Configurations for all ME 477 laboratory

exercises were loaded into your

workspace in steps 4 and 5 of Part 1 of the

C Development Tool Setup

documentation—see Resource 7.

Building the Project Building the project

consists of compiling your C source code

into object modules, and linking them

with other resources. Many coding errors

can be found during the building process.

Since building does not require that the

development system be connected to the

target, time spent in the lab is minimized.

Before building, save any edit changes in

the source code (ctrl-s). Either right click
the project and use Build Project, or select

and use Build Project from the Project pull

down menu. Errors and warnings are

displayed in the console menu in the

bottom pane.

During each build, the CDT automatically

re-compiles any file that has been edited

(and saved). The build operation creates

an output file in project’s Debug folder.

Running the Project The project must build

without errors before it can be run. The

first time a project is run, pull down the

Run menu and select Run

00 Getting started Lab Exercise: Getting started p. 1

Configurations…. In the Run

Configurations window, select the Run

Configuration of your project. Then click

Run.

The first run after a connection, you may

be asked to login. Use User ID: admin and
Password: me477.
Recently run projects may be conveniently

run from the pull down menu under the

run icon .

A project will not run if a project is already

running.

Barring execution problems, the project

runs until main{} terminates.

Debug Perspective

Enter the Debug Perspective by selecting that

button in the upper right. The Debug

perspective lets you manage the debugging or

running of a program. You can control the

execution of your program by setting

breakpoints, suspending launched programs,

stepping through your code, and examining the

contents of variables.

Debugging the Project The project must

build without errors before it can be

debugged. The first time a project is

debugged, pull down the Run menu and

select Debug Configurations…. In the

Debug Configurations window, select the

configuration of your project. Then click

Debug.

After the first debug, the project may be

conveniently selected for debugging by

pulling down menu under the debug icon

.

A project may not be debugged if a project

is already running.

Breakpoints A breakpoint suspends the

execution of a program at the location

00 Getting started Lab Exercise: Getting started p. 1

where the breakpoint is set. To set a line

breakpoint, right-click in the marker bar

area on the left side of an editor beside the

line where you want the program to be

suspended, then choose Toggle

Breakpoint. You can also double-click on

the marker bar next to the source code line.

A new breakpoint marker appears on the

marker bar, directly to the left of the line

where you added the breakpoint. Also,

the new breakpoint appears in the

Breakpoints view list.

Once set, a breakpoint can be enabled and

disabled by right-clicking on its icon or by

right-clicking on its description in the

Breakpoints view.

• When a breakpoint is enabled, it

causes the program to suspend

whenever it is hit. Enabled

breakpoints are indicated with a blue

enabled breakpoint circle.

• Enabled breakpoints that are

successfully installed are indicated

with a checkmark overlay.

• When a breakpoint is disabled, it will

not affect the execution of the

program. Disabled breakpoints are

indicated with a white disabled

breakpoint circle.

Debug view toolbar commands

The Debug perspective also drives the C/C++

Editor. As you step through your program, the

C/C++ Editor highlights the location of the

execution pointer.

Resume Select the Resume command to

resume execution of the currently

suspended debug target.

00 Getting started Lab Exercise: Getting started p. 1

Suspend Select the Suspend command to

halt execution of the currently selected

thread in a debug target.

Terminate Ends the selected debug session

and/or process. The impact of this action

depends on the type of the item selected in

the Debug view.

Step Over Select to execute the current

line, including any routines, and proceed

to the next statement.

Step Into Select to execute the current line,

following execution inside a routine.

Step Return Select to continue execution to

the end of the current routine, then follow

execution to the routine’s caller.

Debug information

Variables You can view information about the

variables in a selected stack frame in the

Variables view. When execution stops, the

changed values are by default highlighted

in red. Like the other debug-related views,

the Variables view does not refresh as you

run your executable. A refresh occurs

when execution stops.

Expressions An expression is a snippet of code

that can be evaluated to produce a result.

The context for an expression depends on

the particular debug model. Some

expressions may need to be evaluated at a

specific location in the program so that the

variables can be referenced. You can view

information about expressions in the

Expressions view.

Registers You can view information about the

registers in a selected stack frame. Values

that have changed are highlighted in the

Registers view when the program stops.

Memory You can inspect and change memory.

Disassembly You can view disassembled code

00 Getting started Lab Exercise: Getting started p. 1

mixed with source information.

Figure 00.6: myRIO-1900 Hardware Block Diagram (source: Instruments
(2013))

The system on a chip

The NI myRIO is centered around a Xilinx

Z-7010 system on a chip (SoC): a dual-core

Coretex A-9 CPU, memory, I/O inerfaces, and

00 Getting started Lab Exercise: Getting started p. 2

3. � Xilinx, 2017.

an Artix-7 fully programmable gate array

(FPGA). The Z-7010 datasheet3 is available here.

These are powerful SoCs. The Coretex A-9

CPUs have 667MHz clocks, have single- and

double-precision vector float point units, and

include NEON extensions (Xilinx, 2017). These

processors use the ARMv7-A instruction set

architecture (ISA) (ARM, 2012, 2014). The

Coretex-A9 Reference Manual and

Programmer’s Guide are available here.

https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://developer.arm.com/products/processors/cortex-a/cortex-a9

00 Getting started Lab Exercise: Getting started p. 1

Resource R3 User interface hardware subsystem

00 Getting started Lab Exercise: Getting started p. 1

Resource R4 Motor driver subsystem

Lorem ipsum dolor sit amet, consectetuer

adipiscing elit. Ut purus elit, vestibulum ut,

placerat ac, adipiscing vitae, felis. Curabitur

dictum gravida mauris. Nam arcu libero,

nonummy eget, consectetuer id, vulputate a,

magna. Donec vehicula augue eu neque.

Pellentesque habitant morbi tristique senectus et

netus et malesuada fames ac turpis egestas.

Mauris ut leo. Cras viverra metus rhoncus sem.

Nulla et lectus vestibulum urna fringilla ultrices.

Phasellus eu tellus sit amet tortor gravida

placerat. Integer sapien est, iaculis in, pretium

quis, viverra ac, nunc. Praesent eget sem vel leo

ultrices bibendum. Aenean faucibus. Morbi

dolor nulla, malesuada eu, pulvinar at, mollis

ac, nulla. Curabitur auctor semper nulla. Donec

varius orci eget risus. Duis nibh mi, congue eu,

accumsan eleifend, sagittis quis, diam. Duis

eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales,

sollicitudin vel, wisi. Morbi auctor lorem non

justo. Nam lacus libero, pretium at, lobortis

vitae, ultricies et, tellus. Donec aliquet, tortor

sed accumsan bibendum, erat ligula aliquet

magna, vitae ornare odio metus a mi. Morbi ac

orci et nisl hendrerit mollis. Suspendisse ut

massa. Cras nec ante. Pellentesque a nulla.

Cum sociis natoque penatibus et magnis dis

parturient montes, nascetur ridiculus mus.

Aliquam tincidunt urna. Nulla ullamcorper

vestibulum turpis. Pellentesque cursus luctus

mauris.

Nulla malesuada porttitor diam. Donec felis

erat, congue non, volutpat at, tincidunt tristique,

libero. Vivamus viverra fermentum felis. Donec

nonummy pellentesque ante. Phasellus

adipiscing semper elit. Proin fermentum massa

ac quam. Sed diam turpis, molestie vitae,

placerat a, molestie nec, leo. Maecenas lacinia.

00 Getting started Lab Exercise: Getting started p. 2

Nam ipsum ligula, eleifend at, accumsan nec,

suscipit a, ipsum. Morbi blandit ligula feugiat

magna. Nunc eleifend consequat lorem. Sed

lacinia nulla vitae enim. Pellentesque tincidunt

purus vel magna. Integer non enim. Praesent

euismod nunc eu purus. Donec bibendum

quam in tellus. Nullam cursus pulvinar lectus.

Donec et mi. Nam vulputate metus eu enim.

Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh.

Morbi vel justo vitae lacus tincidunt ultrices.

Lorem ipsum dolor sit amet, consectetuer

adipiscing elit. In hac habitasse platea dictumst.

Integer tempus convallis augue. Etiam facilisis.

Nunc elementum fermentum wisi. Aenean

placerat. Ut imperdiet, enim sed gravida

sollicitudin, felis odio placerat quam, ac

pulvinar elit purus eget enim. Nunc vitae tortor.

Proin tempus nibh sit amet nisl. Vivamus quis

tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus.

Sed bibendum, nulla a faucibus semper, leo

velit ultricies tellus, ac venenatis arcu wisi vel

nisl. Vestibulum diam. Aliquam pellentesque,

augue quis sagittis posuere, turpis lacus congue

quam, in hendrerit risus eros eget felis.

Maecenas eget erat in sapien mattis porttitor.

Vestibulum porttitor. Nulla facilisi. Sed a turpis

eu lacus commodo facilisis. Morbi fringilla, wisi

in dignissim interdum, justo lectus sagittis dui,

et vehicula libero dui cursus dui. Mauris

tempor ligula sed lacus. Duis cursus enim ut

augue. Cras ac magna. Cras nulla. Nulla

egestas. Curabitur a leo. Quisque egestas wisi

eget nunc. Nam feugiat lacus vel est. Curabitur

consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum

eu, tincidunt sit amet, laoreet vitae, arcu.

Aenean faucibus pede eu ante. Praesent enim

elit, rutrum at, molestie non, nonummy vel, nisl.

Ut lectus eros, malesuada sit amet, fermentum

00 Getting started Lab Exercise: Getting started p. 3

eu, sodales cursus, magna. Donec eu purus.

Quisque vehicula, urna sed ultricies auctor,

pede lorem egestas dui, et convallis elit erat sed

nulla. Donec luctus. Curabitur et nunc.

Aliquam dolor odio, commodo pretium,

ultricies non, pharetra in, velit. Integer arcu est,

nonummy in, fermentum faucibus, egestas vel,

odio.

Sed commodo posuere pede. Mauris ut est. Ut

quis purus. Sed ac odio. Sed vehicula hendrerit

sem. Duis non odio. Morbi ut dui. Sed

accumsan risus eget odio. In hac habitasse

platea dictumst. Pellentesque non elit. Fusce

sed justo eu urna porta tincidunt. Mauris felis

odio, sollicitudin sed, volutpat a, ornare ac, erat.

Morbi quis dolor. Donec pellentesque, erat ac

sagittis semper, nunc dui lobortis purus, quis

congue purus metus ultricies tellus. Proin et

quam. Class aptent taciti sociosqu ad litora

torquent per conubia nostra, per inceptos

hymenaeos. Praesent sapien turpis, fermentum

vel, eleifend faucibus, vehicula eu, lacus.

00 Getting started Lab Exercise: Getting started p. 1

Resource R5 Motor and mechanical apparatus subsystem

Motor

Mechanical apparatus

The motor hanger, shaft, shaft hanger, ball

bearings, and retainer rings are best purchased

from a single mechanical supplier (for tolerance

matching); we have chosen the following WM

Berg parts (catalog pages linked):

1. motor hanger (blank): BC7-1C (needs

holes drilled),

2. shaft (1/4 in diameter, 4 in length): s4-40,

3. shaft hanger (supports shaft through

bearings): BC17-12C,

4. ball bearings (2): B1-9,

5. retainer rings (2): Q4-62, and

6. split cylinder shaft coupler: CO41S-2.

The split cylinder shaft coupler is a flexible

coupler that helps with inevitable shaft

misalignment.

The flywheel is the only custom-machined

mechanical part. It is 304 stainless steel, one

inch thick and 2.5 in diameter with a 0.25 in hole

in the center for the shaft.

The Association of Electrical Equipment and

Medical Imaging Manufacturers NEMA defines

standards that many motor manufacturers use

for mounting geometry.

http://www.wmberg.com/
http://www.wmberg.com/
https://www.nema.org

00 Getting started Lab Exercise: Getting started p. 1

Resource R6 Sourcing and costs

00 Getting started Lab Exercise: Getting started p. 1

Resource R7 Setting up the C Development Tool for

myRIO

Box 00.2 setting up a lab PC or one’s

own laptop?

For configuring your own laptop,

complete all the steps, below.

For configuring a lab PC, complete steps

4 and 5 of Part A, then complete all

remaining parts (Part B – Part F).

Box 00.3 myRIO connected?

Parts A, B, and C can be performed

without connecting your laptop to one of

the lab myRIOs. For Parts D, E, and F, a

myRIO connection is required.

Do Parts A, B, and C just once, in the order

shown.

Part A: Setting up the software environment

Follow these instructions to set up the C

Development Tool for myRIO. Clicking on

hyperlinks opens the appropriate websites in

your browser.

1. Download and install LabVIEW 2015

myRIO Toolkit. (2700 Mb)

For Native Windows 8 or 10:

Download myRIOToolkit2015.

Mount disk image. Then run

setup.exe.
For Native Windows 7: Download

from myRIOToolkit2015. You may

need a means of mounting the .iso
disk image. For example, use Virtual

CloneDrive to mount the .iso disk
image files as a virtual CD-ROM

drive. Then run setup.exe.

https://drive.google.com/uc?export=download&id=0BxOxVaK0rJzucmlQX1RoaU9wTEk
https://drive.google.com/uc?export=download&id=0BxOxVaK0rJzucmlQX1RoaU9wTEk
https://drive.google.com/file/d/0B_FhC5ZoEdWLTzh0dnNNdFFJeFE/view
https://drive.google.com/file/d/0B_FhC5ZoEdWLTzh0dnNNdFFJeFE/view

00 Getting started Lab Exercise: Getting started p. 2

For Virtual Windows 7, 8, or 10 under Parallels:

Download

myRIOToolkit2015 under OS X. From

Parallels, Devices CD/DVD Connect Image... and

mount the disk image.

Then run setup.exe.

2. Install Java. Visit the Java website GetJava

to download Java. (17 Mb) Use Internet

Explorer, not Microsoft Edge.

3. Install the C/C++ Development Tools for

NI Linux Real-Time 2014, Eclipse Edition.

Visit this link Eclipse2014 to download

and install Eclipse. (260 Mb)

4. Project templates have been prepared for

each of the ME 477 laboratory exercises.

Visit the ME 477 website Resources Page

to download the

ME477 myRIO support 2018 archive.
Remember where you put this archive, but

do not unzip. (2 Mb)

5. Eclipse uses Launch Configurations to

specify how the project will be deployed

and run on the myRIO.

Visit the ME 477 website Resources Page

to download the

ME 477 Launch Configurations archive.
Unzip into folder LaunchConfig477 (40
kb). Remember where you put the folder.

6. Add the compiler path to the system

environment variables.

a. Visit the ME 477 website Resources

Page.

64-bit compiler path file, select
and copy with ctrl + C the contents.

b. In the Windows Control Panel, select

System and Security System Advanced system settings to

display the System Properties
dialog box.

c. Click Environment Variables to display the

Environment Variables dialog box.

https://drive.google.com/uc?export=download&id=0BxOxVaK0rJzucmlQX1RoaU9wTEk
http://www.java.com/getjava
https://drive.google.com/uc?export=download&id=0BxOxVaK0rJzuR0RlVDNmV1A4Q3c
http://courses.washington.edu/mengr477/resources.html
http://courses.washington.edu/mengr477/resources.html
http://courses.washington.edu/mengr477/resources.html
http://courses.washington.edu/mengr477/resources.html

00 Getting started Lab Exercise: Getting started p. 1

d. Select PATH in the User variables
group box and click Edit .

If PATH does not exist, click New to

create it.

e. Click New and paste with ctrl + V the

compiler path to the end of

Variable value (separated by the ;
character). Be certain that there are

no extra spaces in the path.

7. Click OK to close the dialog box and save

changes.

Part B: Define a connection to the myRIO

Complete the following steps to define a

connection in Eclipse from your laptop to the

myRIO target.

1. Launch Eclipse, specify a workspace, and

click OK to display the C/C++ perspective

(default).

Two other perspective views, Remote

Systems Explorer and Debug, will also be

useful. To make these available, select

Window Open Perspective Other to display the

Open Perspective dialog box.
Then select Remote Systems Explorer
and click OK to display the Remote

Systems Explorer perspective. Repeat this

process to display the Debug perspective.

Buttons for all three perspectives should

appear and can be used at any time to

switch perspectives.

2. Open the Remote Systems Explorer

perspective to display the

Remote Systems pane at left.
3. Click the

Define a connection to remote system

icon to display the New Connection
dialog box.

4. Select General SSH Only .

00 Getting started Lab Exercise: Getting started p. 1

Figure 00.7: Remote Systems Explorer with myRIO
connection successfully defined.

5. Enter the IP address 172.22.11.2 in the
Host name textbox and click Finish . Your

target displays in the Remote Systems tab
in the Remote System Explorer pane, as
shown in Figure 00.7.

Part C: Importing C Support and Launch Configurations

Complete the following steps to import C

Support and Launch Configurations to Eclipse.

1. From the C/C++ perspective, select File

Import to display the Import dialog box.
2. Select General Existing Projects into Workspace and click Next

to display the Import Projects page.
3. Select Select archive file , click Browse and select the

ME 477 C Support for myRIO zip file
downloaded in step 4 of Part A.

4. Ensure that all items are checked and click

Finish to import

ME 477 C Support for myRIO. See
Figure 00.8.

5. Build (compile) all projects with menu

selection Project Build All .

00 Getting started Lab Exercise: Getting started p. 2

Figure 00.8: ME 477 Project Templates.

Figure 00.9: Launch Configurations.

6. Again, from the C/C++ perspective, select

File Import to display the Import dialog box.
7. Select menu item Run/Debug Launch Configurations and

click Next to display the Import Launch
Configurations page.

8. Click Browse and select the LaunchConfig477
folder that you downloaded in step 5 of

Part A.

9. Ensure that all items are checked and click

Finish . To check that the import of the

Launch Configurations was successful,

select menu item Run Run Configurations... and

compare the dialog with Figure 00.9.

00 Getting started Lab Exercise: Getting started p. 1

Figure 00.10: the Remote Systems tab should appear like this
once a connection is established successfully.

Box 00.4 myRIO connected?

Your laptop must be connected through

a USB cable to one of the myRIOs to

perform Parts 4, 5, and 6. Each time you

connect, a myRIO USB Monitor dialog box
will appear indicating myRIO IP Address

172.22.11.2. Always select Do Nothing .

Part D: Connect to the myRIO target

Complete the following steps to establish a

connection between Eclipse and the myRIO

target.

1. In the Remote Systems pane, right-click
the target and select Connect from the

shortcut menu to display the Enter
Password dialog box.

2. Enter the user ID: admin and password:
<UW: me477 | SMU: leave blank> and

click OK .

3. Click OK in the Info dialog box.
4. If the Keyboard Interactive

authentication dialog box appears, leave
the password blank, and click OK . As

shown in Figure 00.10, green arrow

appears on the target icon when the

myRIO is connected.

Part E: Running the myHelloWorld project

In Parts 5 and 6 you will run and debug a

project. Here, the myHelloWorld project is used

00 Getting started Lab Exercise: Getting started p. 1

as example.

Eclipse uses a “Run Configuration” to specify

how the project will be deployed and run on the

myRIO. Run Configurations for ME 477 projects

were downloaded in step 5 of Part A.

Complete the following steps to run the

myHelloWorld example project.

1. In Eclipse, switch to the C/C++

perspective.

2. You can view and edit the C source code

by double clicking on the myHelloWorld
project in the left pane, and then double

clicking on main.c.
3. In the Project Explorer pane, right-click

the myHelloWorld project, and select
Build Project from the shortcut menu to build

the project. Any build errors will be noted

in the Problems pane.
4. Right-click the myHelloWorld project and

select Run As Run Configurations to display the Run
Configurations dialog box.

5. Select the myHelloWorld project in the left
pane.

6. Click Run . The project runs on the myRIO

target. You can find the result in the

Console pane, and on the LCD screen.

Part F: Debugging the myHelloWorld project

Similarly, Eclipse uses a “Debug Configuration”

to specify how the program will be debugged

on the myRIO. Once the Debug Configuration

for a project is set up, debugging the program

requires just a single click.

Complete the following steps to set up the

Debug Configuration for the myHelloWorld
project. These include building, deploying, and

debugging the project.

1. In Eclipse, switch to the C/C++

perspective.

00 Getting started Lab Exercise: Getting started p. 2

2. In the Project Explorer pane, right-click
the myHelloWorld project and select Debug As

Debug Configurations to display the Debug
Configurations dialog box.

3. Select the myHelloWorld project in the left
pane.

4. Click Debug . The project runs on the myRIO

target within the debugger. Some

warnings may appear in the Console pane.

Under normal circumstances, these

warnings are not a problem. You can find

the debug tools on the toolbar of Eclipse.

There will be more about this in the first

laboratory exercise.

5. For now, try setting a breakpoint at the

printf() statement by double-clicking in
the margin at left of that statement. A blue

dot with a small checkmark should

appear in the margin. The blue dot

indicates that the breakpoint is enabled,

and the checkmark indicates that the

breakpoint is installed.

If you resume (green arrow) from the

beginning of the program, execution

should pause at the breakpoint, as shown

in Figure 00.11.

00 Getting started Lab Exercise: Getting started p. 3

Figure 00.11: debugging and stopped at a breakpoint.

00 Getting started Lab Exercise: Getting started p. 1

Resource R8 Suggested reading

The classic C programming language

text Kernighan and Ritchie (1988), co-authored

by Dennis Ritchie, who developed the language

at AT&T Bell Laboratories between 1969 and

1973.

For computer hardware and software concepts,

Patterson and Hennessy (2016) is a good

introduction.

Part II

The User Interface

01

Computing principles, myRIO C programming,
and high-level io drivers

