
01 Computing principles, myRIO C programming, and high-level io drivers Memory p. 1

01.1 Memory

Computer memory is a collection of bistable

devices—so they can represent only, say 0 or a 1

in each bit—organized as bytes: collections of 8

binary digits or bits. There are 28 = 256 unique

bytes. In more modern systems, each byte (n.b.

not bit) of memory has a unique address—an

identifying code. An important aspect of the C

programming language is that it can deal

directly with these memory addresses, a

relatively low-level functionality.

Memory is not content-specific. It can be used to

represent numbers (integers, floating point,

signed numbers, etc.), codes (character codes,

numeral codes, etc.), and instructions. We must

keep track of the meaning of its contents. For

instance, a single bit could represent the state of

the union: 1 could mean “covfefe” and 0,

“dumpsterfire.” A less exciting example with

two bits representing four directions:

11⇒ north

00⇒ south

01⇒ east

10⇒ west

Things you can store in memory

Pure binary numbers

Non-negative integers of different magnitudes

can be stored as pure binary in memory. Here is

an example using one byte or two nibbles:

0000 00002 = 010

0000 00012 = 110

...

1111 11102 = 25410

1111 11112 = 25510.



01 Computing principles, myRIO C programming, and high-level io drivers Memory p. 1

1. The first borrow might seem strange, but it’s simply 102 − 012 =

210 − 110 = 110 = 012.

So the non-negative integers we can store in one

byte are 0–255, of which there are 28 = 256.

But we can use more than one byte to store a

non-negative integer in pure binary. If multiple

bytes are representing a number, the byte that

occurs first (in terms of address) in memory is

called the most significant byte (MSB), and the

byte that occurs last is called the least significant

byte (LSB). The MSB is usually represented as

being to the left of the other bytes, and the LSB

is typically represented as being to the right.

Here is a list of the total number of possible

non-negative integers that can be stored in n

bits (formula: 2n) for typical values of n:

28 = 256

216 = 65, 536

224 = 16, 777, 216

232 = 4, 294, 967, 296.

8-bit two’s complement signed binary

How can a negative number be stored in

memory? A single byte can store 256 unique

pieces of information. For decimal numbers,

this can range 0 to 255 or (say) −128 to 127.

A very convenient binary representation is

called two’s complement. A number x has two’s

complement in n bits of (2n − x)2; that is, the

number of unique numbers representable minus

the number, represented in binary. For instance,

the 8-bit two’s complement of 0110 1000 is1

1 0000 0000
− 0110 1000

Below are listed some 8-bit two’s complement



01 Computing principles, myRIO C programming, and high-level io drivers Memory p. 1

decimal interpretations of binary numbers.

0000 00002 = 0

0000 00012 = 1

...

0111 11112 = 127

1000 00002 = −128

1000 00012 = −127

...

1111 11102 = −2

1111 11112 = −1

As if in Pac-Man, starting from the middle and

exiting screen-right, only to appear

screen-left—counting “up” loops one back

down to negative numbers. Note that positive

two’s complements are the same as their pure

binary counterparts.

There are two more-convenient ways to find the

two’s complement:

1. switching all bits (0 7→ 1 and 1 7→ 0), then
adding 1 or

2. starting from the right, copying all bits

through the first 1 encountered, then
switching all thereafter.

Both methods can be seen to always hold from

the subtraction definition.

The two’s complement of the two’s complement

of x is x; that is, it is its own inverse.

Example 01.1 -1 re: two’s complement

Find the two’s complement of 0000 0101.

If a binary number is interpreted as a two’s

complement binary number, it is negative if its

most significant bit (msbit) is 1.



01 Computing principles, myRIO C programming, and high-level io drivers Memory p. 1

2. The mantissa is also called the significand or coefficient.

Binary coded decimal (BCD)

A binary coded decimal (BCD) represents each

decimal digit with a nibble, so a series of nibbles

can represent a decimal number. This leads to

slightly less-dense storage, but is still useful for

high-precision computation.

Example 01.1 -2 re: BCD for rounding error

Recall that the number 421.73 had an infinitely

long binary representation in Example 00.4 -

1. Represent this number in BCD. Let there be

an “implied” decimal point, as some encodings

define, between the third and fourth nibbles.

Floating point

Floating point numbers can represent very large

or very small numbers with limited space. It is

for computer memory what scientific notation is

for a small piece of paper: that is, it represents a

number as a mantissa2 x and an exponent n;

that is, x2n, where we have used the

conventional base of 2.

Consider the following illustration of a 32-bit

(four-byte) floating point representation.

︸ ︷︷ ︸
8-bit signed binary exponent

︸ ︷︷ ︸
24-bit fractional signed binary mantissa

We would interpret this as, for instance,

·1011 · · ·︸ ︷︷ ︸
24-bit mantissa

× 2 1011 0110︸ ︷︷ ︸
8-bit exponent

. (1)



01 Computing principles, myRIO C programming, and high-level io drivers Memory p. 1

Character codes

In addition to numbers, memory can store

character codes: encoded alphabetic, special

symbols, emojis, etc.

The most common character code is the

American Standard Code for Information

Interchange (ASCII). It’s a 7-bit code, so there

are 128 unique character codes.

It leaves the eighth bit of a byte, “bit seven,” the

parity bit, to be checked for transmission errors.

It works as follows. Set (1) or reset (0) before
transmission such that the total number of set

(1) bits is either even or odd. If the system is

using even parity, an even number of bits are

set; or if it’s using odd parity, an odd number of

bits are set.

For instance, under odd parity, if the byte 1100
1101 is sent and the byte 1100 0101 is received,
with its even number of set bits, the receiving

system knows there has been a transmission

error.

Instructions

Instructions are codes that direct the operation

of a microprocessor. The myRIO has an ARM

Cortex-A9 processor with 32-bit instructions.

Example 01.1 -3 re: memory interpretation

Suppose the following is stored in a byte of

memory: 1101 0101 or D5. How might this be

interpreted?



01 Computing principles, myRIO C programming, and high-level io drivers Memory p. 2

Memory organization

In memory, bits are grouped into bytes of eight

bits. Each byte is often considered as two

nibbles, the contents of each represented by a

hexadecimal numeral. For instance, a byte

might be represented as follows.

1101 0100

D 4

Each byte is given a unique positive integer

address distinct from its contents.

address contents

0

1

2

3

4
...

When storing a multi-byte number, we use the

bigendian convention: the MSB is stored at the

lower address. The littleendian convention

stores the MSB at the higher address.


