
01 Computing principles, myRIO C programming, and high-level io drivers A CPU programming model p. 1

4. For an interesting discussion of “why the offset,” see this informative
SO answer.

01.3 A CPU programming model

A central processing unit (CPU) has three

functions that are repeated endlessly:

1. fetch an instruction from memory,

2. translate the instruction, and

3. execute it.

Typically, the control unit of a CPU fetches

instructions from memory and translates them.

It then sends to the datapath of the CPU to be

processed. It does this by means of registers,

which are small, special purpose units of

memory in the datapath.

Core ARM registers

A developer of an embedded system with a

given CPU must understand it at the

“application-level,” which is distinguished from

the “system-level” of the operating system. An

application-level “view” of the ARM processor

registers has thirteen general-purpose 32-bit

registers named R0–R12 and three

special-purpose registers named SP, LR, and PC

(also called R13–R15) (ARM, 2014, p. A2-45).

The stack pointer SP (R13) register contains the

memory address of, and therefore points to, the

top of the active stack. A stack holds data, such

as “automatic variables,” temporarily. We’ll

talk more about stacks, later.

The return link LR (R14) register is used, for

instance, to store the current memory address of

the calling program during a subroutine call.

The program counter PC (R15) register contains

the memory address of the current instruction

plus eight (bytes)—that is, of two

instructions-from-now.4

The general-purpose registers typically hold

data, such as ints, doubles, and chars.

https://stackoverflow.com/a/24092329/2691113
https://stackoverflow.com/a/24092329/2691113


01 Computing principles, myRIO C programming, and high-level io drivers A CPU programming model p. 1

Other ARM registers

The 32-bit application status register (APSR)

stores the program’s last-executed instruction

return status in flags:

• N: negative condition (e.g. two’s

complement negative MSbit),

• Z: zero condition (e.g. equal from

comparison),

• C: carry condition (e.g. unsigned overflow

from addition),

• V: overflow condition (e.g. signed

overflow from addition), and

• Q: overflow or saturation condition (e.g.

from DSP)

encoded as single bits. These flags can be tested

by the next instruction for conditional

execution. A nibble of the APSR stores the GE:

greater-than or equal flag.

The execution state registers allows special

instruction sets, such as Thumb, to be executed;

contains special Thumb instructions; and sets

the register endianness mapping (big-endian or

little-endian).

The Xilinx Z-7010 Coretex-A9 has the optional

ARMv7-A vector floating-point unit VFPv3 ISA

extension, which enables high-performance and

efficiency of floating-point arithmetic. The

extension has its own, dedicated extension

registers.

Types of instructions

Below are some examples of the types of

instructions a CPU might encounter:

• load or store (to/from CPU registers),

• transfers (between registers),

• move (memory→memory),
• set/reset bits,

• shift/rotate,



01 Computing principles, myRIO C programming, and high-level io driversexe A CPU programming model p. 1

• arithmetic (add, subtract, multiply, divide,

negate),

• logic (ands, ors, etc.),

• conditional branches and jumps,

• unconditional branches and jumps, and

• subroutines.

Addressing modes

Addressing modes specify how the CPU is to

calculate the memory address for a load or a

store operation. For the ARMv7-A ISA, the

address is composed of two parts: a base

register value and an offset (ARM, 2014,

p. A4-176). The base register can be any core

ARM register. The offset must have one of the

following three formats.

Immediate An unsigned number, it can be

summed with (or subtracted from) the

value of the base register.

Register A value from a core ARM register

other than PC.

Scaled register A shifted value from a core

ARM register other than PC summed with

(or subtracted from) the value of the base

register.

These lead to the following three addressing

modes:

Offset The offset is summed with (or

subtracted from) the base register, forming

the memory address.

Pre-indexed Same as “Offset,” followed by

the new address is then assigned to the

base register.

Post-indexed The memory address is the

value of the base register. Then the base

register is offset.


