
01 Computing principles, myRIO C programming, and high-level io driversL Lab Exercise: Introduction to myRIO C programming and high-level io drivers p. 1

01.L Lab Exercise: Introduction to myRIO C

programming and high-level io drivers

Objectives

In this exercise you will gain experience with:

1. C programming for myRIO.

2. The beginning of a device driver for the

keypad/LCD.

3. On-line debugging techniques.

Introduction

In Lab Exercises 01, 02 and 03, we will write

several functions that will allow a user to

interact with the program through the keypad

and LCD screen. Below is an outline of the

functional dependencies and corresponding Lab

Exercises. Functions provided by the me477
library, core C, or the standard C library will be

overwritten by those we write, which are shown

in green.

01 Computing principles, myRIO C programming, and high-level io driversL Lab Exercise: Introduction to myRIO C programming and high-level io drivers p. 1

double_in (Lab 01) prompts LCD and returns keypad double← this lab!

fgets_keypad (Lab 02) gets string from keypad

getchar_keypad (Lab 02) gets char from keypad

getkey (Lab 03) gets char from keypad

putchar_lcd (Lab 03) prints char to LCD

printf_lcd (Lab 01) prints string to LCD← this lab!

putchar_lcd (Lab 03) prints char to LCD

vsnprintf (Lab 01) assigns to formatted string

sscanf (Lab 01) converts ASCII to binary

strstr (Lab 01) find string in string

strpbrk (Lab 01) find member in string

It is important to note that these functions are

already available in me477 library, so when we
write our own version of a function, it

supersedes the library version. This allows us to

depend on the lower-level functions without

writing them, first.

In this Lab Exercise, in addition to the main
program, you will write double_in and
printf_lcd. At this point, you are expected to
have only an elementary knowledge of C, but

you should become familiar with the

procedures, such as debugging, that you will

need in the future.

Pre-laboratory preparation

Complete the following and make sure your

functions compile before running them while

connected to the lab hardware.

01 Computing principles, myRIO C programming, and high-level io driversL Lab Exercise: Introduction to myRIO C programming and high-level io drivers p. 2

Part #1 User input: writing the function

double_in

Very often in an interaction between a computer

and a user, a message or “prompt” is written on

the LCD display and the user is expected to

respond by entering an appropriate decimal

number through the keypad. In this laboratory

exercise you will write a C function, called

double_in, to perform the complete

keypad/LCD procedure.

This function will be used here, and in later

exercises, to obtain numerical information

through interaction with the terminal. It should

execute the following steps each time it is called.

1. A user prompt (a string of ASCII

characters) is written on Line-1 of the LCD

display. A pointer to the string

corresponding to this prompt is the only

argument of the double_in function.
2. A floating point number is accepted from

the keypad in response to the prompt. If

an error occurs in the input string, the

display is cleared, an error message is

written on Line-2 of the display, and the

prompt is issued again on the first line.

The number is entered as a string of ASCII

characters that may include the decimal

digits 0 - 9, a decimal point, and a minus

sign, and is terminated by ENTR .

3. The entered string is interpreted as a

floating point number.

4. The floating point number (C data type

double) is returned from double_in
function to the calling program.

The prototype of the double_in function is

double double_in(char *prompt);

For example, a call to double_inmight be:

01 Computing principles, myRIO C programming, and high-level io driversL Lab Exercise: Introduction to myRIO C programming and high-level io drivers p. 3

vel = double_in("Enter Velocity: ");

The variable velwould be assigned the value
entered.

The LCD interaction would look like:

Enter Velocity: -50.75

Or, if an error occurs: (e.g. user enters: -50..75)

Enter Velocity: _
Bad Key. Try Again.

Allow for four possible user errors:

Error Type Error Message

Displayed on Line-2

No digits are entered Short. Try Again.

(e.g. ENTR only)

↑ or ↓ Bad Key. Try Again.

“−” other than first Bad Key. Try Again.

character (e.g.“−−”)

“..” Bad Key. Try Again.

double decimal point

Our goal here is that the user must enter a valid

number before the double_in function can exit.
Notice that the errors are detected in the string

that the user enters.

Here is a possible strategy for double_in:
Begin by using the printf_lcd function (which
we will also write in this exercise) to display the

prompt on the LCD screen. Then,

1. Use fgets_keypad (get string) to obtain
the string from the keypad. Its prototype

is:

char * fgets_keypad(char *buf, int buflen);

When fgets_keypad is called, as in
fgets_keypad(string, 40), it assigns the

01 Computing principles, myRIO C programming, and high-level io driversL Lab Exercise: Introduction to myRIO C programming and high-level io drivers p. 1

characters from the keypad to the string
variable, which should have been declared

to be a character array, like

static char string[40]. However, if
ENTR is pressed,

fgets_keypad(string, 40) returns NULL
(instead of writing to string). So if you
defined

flag = fgets_keypad(string, 40), if
ENTR is pressed flag == NULL should be
true.

2. Use strpbrk (string pointer break) to
detect ↑ or ↓. Note: ↑ is returned by
fgets_keypad as the ASCII character [
and ↓ as].

3. Use strpbrk to detect minus signs -
beyond the first character.

4. Use strstr to detect double decimal
points (i.e. ..).

5. Use sscanf (scan formatted from string) to

perform the ASCII-string-to-double

conversion. Hint: because sscanf is
converting to a variable of type double,
you need to use the format %lf (long float).

Note: printf_lcd and fgets_keypadwork like
the standard C functions printf and fgets, and
are linked to your program from

me477 library.
Write a main program that tests your double_in
function by calling it twice from the main
program, assigning each result to a different

variable. Then, as a check, print the values of

both variables on the console using printf. See
Algorithm L.1 for main pseudocode and
Algorithm L.2 for double_in pseudocode.

Part #2 Display on LCD: writing the function

printf_lcd

Our second task is to write the printf_lcd
function used by double_in. The C function

01 Computing principles, myRIO C programming, and high-level io driversL Lab Exercise: Introduction to myRIO C programming and high-level io drivers p. 2

Algorithm L.1 main pseudocode
function main

declare double variable vel for velocity
open connection to myRIO and check for

success
call double_in and assign output to vel
print vel to LCD with printf_lcd
close myRIO connection and return its

status
end function

Algorithm L.2 double_in pseudocode
function double_in(p) . p is prompt pointer

declare variables
clear LCD display . use printf_lcd
c← 1 . initialize stop check
while c == 1 do

print p to LCD . use printf_lcd
f← fgets_keypad(s,) . get string s

and out flag f

if f == NULL then
print “Short. Try again.” to LCD

. use printf_lcd
else if s does not pass bad key checks

then
print “Bad key. Try again.” .

use printf_lcd
else

c← 0 . set stop condition
sscanf(s,"%lf",&v) . convert s to

double and assign to v

end if
end while
return v

end function

01 Computing principles, myRIO C programming, and high-level io driversL Lab Exercise: Introduction to myRIO C programming and high-level io drivers p. 3

printf prints to the standard output device, in
our case the Console pane of the Eclipse IDE.

We want printf_lcd to operate exactly as
printf, except that it will print to the LCD
screen. Refer to your C text. To do this, we want

printf_lcd to accept a format string with a
variable number of arguments. Therefore, the

prototype for printf_lcd is

int printf_lcd(const char *format, ...);

where format is a string specifying how to

interpret the data, and the ellipsis (...)
represents the variable list of arguments

specifying data to print. The return value is an

int equal to the number of characters written if
successful or a negative value if an error

occurred.

For example,

n = printf_lcd("\fa = %f, b = %f", a, b);

Here is a suggested strategy for printf_lcd:

• Use the C function vsnprintf to write the
data to a C string.

• Then use the LCD driver function

putchar_lcd to successively write each
character in the string to the LCD display.

Note: It is strongly suggested that you use

an incremented pointer to access the

string, rather than an array index. See

Lec. 01.L for more guidance on

putchar_lcd.

The C function vsnprintfwrites formatted data
from the variable argument list to a buffer (the

string) of a specified size.

The tricky part is passing the variable argument

list of printf_lcd to vsnprintf. Here is an
example fragment of code. From your C text,

study the data type va_list, and the C macros

va_start and va_end to see how this works.

01 Computing principles, myRIO C programming, and high-level io driversL Lab Exercise: Introduction to myRIO C programming and high-level io drivers p. 1

int printf_lcd(char *format, ...) {
va_list args;
va_start(args, format);
n = vsnprintf(string, 80, format, args);
va_end(args);

}

As usual, you must allocate storage for the C

string of length 80.
The main program, the double_in function, and
the printf_lcd function should all be in the
same file: main.c. Be sure to #include the
header files me477.h, <stdio.h>, <stdarg.h>,
and <string.h> in the code.
Once you have defined printf_lcdwithin your
main.c, your code will supersede the version in
the me477 library. See Algorithm L.3 for

pseudocode for printf_lcd.

Algorithm L.3 printf_lcd pseudocode
function printf_lcd(f, v) . f is string format, v
is variable data to print

declare variables
start parse args with va_list, va_start
n← vsnprintf(S,80,f,args) . S is the string

char length 80

finish parse args with va_end
if n < 0 then . test for conversion error

return n

end if
initialize s . s points to start of s
while dereferenced s is not 0 do . check if

S is done
putchar_lcd(dereferenced s with

postfix increment)
end while
return n

end function

Laboratory procedure

Debug and test your C program. As necessary,

use breakpoints and single-stepping to find

errors.

01 Computing principles, myRIO C programming, and high-level io driversL Lab Exercise: Introduction to myRIO C programming and high-level io drivers p. 1

Guidance

This section provides guidance on several

aspects of the Lab Exercise, above.

Background on putchar_lcd

The C function putchar_lcd places the single
character corresponding to its argument on the

LCD screen. Its prototype is

int putchar_lcd(int c);

where both the input parameter and the

returned value are the character to be sent to the

display. A character constant is an integer,

written as one character within single quotes,

such as 'x'.
For example, calls to putcharmight be:

ch = putchar('m');
putchar('\n');

To write both parts of your program you also

need to know how the escape sequences used in

the putchar_lcd function affect the LCD screen.

This concerns the important matter of I/O

(input/output), which we will consider in detail

later. For now the following table explains the

escape sequences:

Escape

Sequence Function

\f Clear Display

\b Move cursor left one space

\v Move cursor to the start of line-1

\n Move cursor to the start of the next line

Dissecting a C program

This lab requires the use of several aspects of

the C programming language. In this section,

some of that is outlined, but a C textbook such

as Kernighan and Ritchie (1988) is required for

sufficient understanding.

01 Computing principles, myRIO C programming, and high-level io driversL Lab Exercise: Introduction to myRIO C programming and high-level io drivers p. 2

We begin by writing a simple C program that

sums loop indices and proceed unpack its

meaning.

1 /* include libraries */
2 #include "stdio.h"
3

4 /* declare function prototypes */
5 int sum(int x); /* sum */
6

7 /* define external/global variables */
8 #define N 5 /* number of loops */
9

10 /* define functions */
11 int main(int argc, char *argv[]) {
12 static int x[10]; /* total */
13 static int i; /* index */
14 for (i=0; i < N; i++) {
15 x[i] = sum(i);
16 printf("%d",x[i]);
17 if (i < N-1) {
18 printf(",");
19 }
20 else {
21 printf(".");
22 }
23 }
24 return 0;
25 }
26

27 int sum(int x) {
28 static int y=0; /* initialize y */
29 y = y + x;
30 return y;
31 }

1 0,1,3,6,10.

C programs consist of variables and functions.

Variables are defined via an assignment

statement, the most common operator is = as
when our program assigns the first value of the

variable i in the expression i = 0, which could
also be written i=0—spaces are added for

clarity.

Our program has two functions: main and sum.
Whenever a C program is executed, it begins

with a function named main. Every program
must have one. If we don’t need to pass any

01 Computing principles, myRIO C programming, and high-level io driversL Lab Exercise: Introduction to myRIO C programming and high-level io drivers p. 3

arguments to our program, in its definition, the

argument can be empty, as in:

int main() { /* statements */ }

If we need to pass arguments—say, from the

command-line—there is a specific method

described in detail by Kernighan and Ritchie

(1988, p. 114) that would have as its definiton:

int main(int argc, char *argv[]) { /* statements */ }

For our program, we don’t use the arguments,

so either is valid.

The ints before the definitions of main and sum
declare that these functions return data type int
for integer. Although it is not strictly required

in every instance, it is considered best practice

to always precede a definition with its return

data type.

Most C programs load external libraries with

pre-compiled functions. The most popular

libraries are from the C standard library. For i/o

functions like the printfwe use here to print to
the console, the stdio.h header file must be
#included, as shown at the top of our program.
We’ll include the header file me477.h, which
includes compiled versions of the functions

we’ll be writing over the next few Lab Exercises.

Best practice is to declare prototypes for each

function (we often skip main, which always has
the same prototype), which, for our sum, looks
like:

int sum(int x);

Here we’re declaring that sum is a function with
a single integer argument, which we’ll call x
inside the function, that returns an integer to the

calling function. These declarations should be

before main. The function definition can occur

01 Computing principles, myRIO C programming, and high-level io driversL Lab Exercise: Introduction to myRIO C programming and high-level io drivers p. 4

either before or after main, but we adopt the
convention of defining functions after main.
External or global variables are those defined

above main. These variables are defined once
and can be accessed by every function that

declares it with extern. A similar, but distinct

object is the symbolic constant, defined by

#define, as with N in our program. A difference

is that symbolic constants need not be declared

within a function. We conventionally capitalize

symbolic constants.

Line 12 shows the declaration of variable x to be
an array with 10 elements. This preallocates a
block of memory for x. Most variables inside a

function are automatic: they are not retained

between function calls. However, often in

embedded computing we will be using pointers

to specific addresses in memory at which a

variable can be found. The safest way to use

pointers is to declare the variable to be static,
as in Lines 12, 13, and 28. A very important

consequence of this declaration is that the

variable’s value is retained between function

calls. For instance, in sum, we initialize y to be a
static integer (0), then add the argument x to it
are return the sum, which has overwritten y.
Each successive call, the old value of y is
retained, so on the second call, third call, for

which x is 2 and the old y is 1, the returned y is
3.
Line 14 is the beginning of a for loop. We

highlight two syntactical nuances. First, there

are the three flow control components in the

statement (initialize;condition;increment).
The initialize statement is executed first and

only once. The condition statement returns a

boolean (actually just an integer) of 1 for true
and 0 for false. If the condition is true, the
statements between the following braces are

executed. Afterwards, the increment statement

is evaluated and the loop returns to evaluate the

01 Computing principles, myRIO C programming, and high-level io driversL Lab Exercise: Introduction to myRIO C programming and high-level io drivers p. 1

condition ….

The second syntactical consideration is that the

braces {} should enclose the looped block.
Although a single statement need not be

enclosed, multiple statements must, and

therefore we adopt the convention of always

enclosing loop statements in braces.

The if/else execution control keywords are
straightforward and are not expanded upon,

here.

Finally, main, like any function, should return to
the calling function (for main, calling program)
some value, which, for most functions, can be of

any data type, but for main is a status code as an
integer. The return keyword defines the
return status, in our program, simply 0.
Conventionally, this signifies to the calling

program that our program has run successfully.

Nonzero main return values are used to signify
different error codes, which should be

documented for your program.

Execution control

As we saw in the example above, C has the

usual execution control statements, which

include while, for, if, else, and else if. This
Lab Exercise should familiarize you with

several of these.

C data types

C has only a few core data types:

• chars are single byte characters;
• ints are integers, the size of which is
machine-dependent;

• floats are single-precision floating-point
numbers, the size of which is

machine-dependent; and

• doubles are double-precision
floating-point numbers, the size of which

is machine-dependent.

01 Computing principles, myRIO C programming, and high-level io driversL Lab Exercise: Introduction to myRIO C programming and high-level io drivers p. 1

Typically, a float is 32-bit and a double is
64-bit. There are also qualifiers such as short
and long, which compilers typically take to
mean “fewer” bytes for the specified

representation or “greater,” respectively.

Arrays are just lists of values. When declaring

an array, one specifies the data type of each

element and the number of elements, as in

double x[10];, which is an array of ten
doubles. Accessing element n of an array x is
done with the syntax x[n]. It is important to
note that the first index of an array is 0 in C.

Pointers

Pointers are a key concept in C. A pointer is

variable that is assigned not a value, but a

memory address. To get some variable x’s value
address, one uses the address operator &, like
&x. In order to assign this to a pointer variable,
the variable must be declared as a pointer to a

specific data type. For x an integer, a pointer to
it can be declared with int *p; and assigned
with p = &x. To access the value to which a
pointer p points, the dereferencing operator *
can be used, as in *p.
Consider the following example.

1 #include "stdio.h"
2

3 int main() {
4 static int x = 1;
5 static int *p = &x;
6 printf("%d\n",x); /* value */
7 printf("%p\n",&x); /* address */
8 printf("%p\n",p); /* pointer */
9 printf("%d\n",*p); /* deref'd pointer */
10 return 0;
11 }

1 1
2 0x100693018
3 0x100693018
4 1

01 Computing principles, myRIO C programming, and high-level io driversL Lab Exercise: Introduction to myRIO C programming and high-level io drivers p. 1

An array variable, say an integer array of length

10 declared by int z[10];, is just a pointer to
the first value in the array. An array name is a

constant pointer, so it cannot be reassigned (e.g.

if p_a is an array, this is invalid: p_b = p_a;).

Cast operator

A cast operator on an expression to type type is

(type) expression. It represents the expression

in the new type in accordance with certain rules.

It does not affect any definitions in the original

expression; rather, it returns a new expression.

Suppose you have the following:

static int a; // 2-byte
static long int b; // 4-byte
b = 3;
a = (int) b; // cast and assign to a

The casting of a four-byte long int to a
two-byte int means there is a potential for
truncation because four bytes can represent

more integers.

When casting to an int from a float or double,
beware that truncation does not round in the

usual sense: it simply drops the fractional part.

It is preferable to use the function round
provided by the standard library header file

math.h.

Incrementing and decrementing

For int x = 0, instead of writing x = x + 1 to
increment x, we can write either ++x or x++. The
former is called a prefix operator and the latter

postfix, both of which increment x, but they are
interpreted differently in an expression:

• ++x increments x, then uses it in the
expression in which it appears (e.g.

n = ++x assigns 1 to x, then 1 to n) and

01 Computing principles, myRIO C programming, and high-level io driversL Lab Exercise: Introduction to myRIO C programming and high-level io drivers p. 1

• x++ uses x in the expression in which it
appears, then increments it (e.g. n = x++
assigns 0 to n, then 1 to x).

The decrement operator -- also has pre- and
postfix versions, but subtracts one instead of

adding.

The next example shows how pointers—not just

ints—can be incremented. They can also be

decremented. Incrementing a pointer moves it

not to the next address, but to the next piece of

data in memory, skipping the necessary number

of bytes.

Operator precedence and associativity

See Lec. 02.2 for a table of operator precedence

and associativity. The following example shows

some interesting precedence and associativity

interactions among operators * and ++ and
parentheses ().

1 #include "stdio.h"
2

3 int main() {
4 static int x = 5;
5 static int *p = &x;
6 printf("(int) p => %d\n",(int) p);
7 printf("(int) p++ => %d\n",(int) p++);
8 x = 5; p = &x;
9 printf("(int) ++p => %d\n",(int) ++p);
10 x = 5; p = &x;
11 printf("++*p => %d\n",++*p);
12 x = 5; p = &x;
13 printf("++(*p) => %d\n",++(*p));
14 x = 5; p = &x;
15 printf("++*(p) => %d\n",++*(p));
16 x = 5; p = &x;
17 printf("*p++ => %d\n",*p++);
18 x = 5; p = &x;
19 printf("(*p)++ => %d\n",(*p)++);
20 x = 5; p = &x;
21 printf("*(p)++ => %d\n",*(p)++);
22 x = 5; p = &x;
23 printf("*++p => %d\n",*++p);
24 x = 5; p = &x;
25 printf("*(++p) => %d\n",*(++p));
26 return 0;
27 }

01 Computing principles, myRIO C programming, and high-level io driversL Lab Exercise: Introduction to myRIO C programming and high-level io drivers p. 1

1 (int) p => 81195032
2 (int) p++ => 81195032
3 (int) ++p => 81195036
4 ++*p => 6
5 ++(*p) => 6
6 ++*(p) => 6
7 *p++ => 5
8 (*p)++ => 5
9 *(p)++ => 5
10 *++p => 0
11 *(++p) => 0

Strings

Strings are arrays of chars, terminated by a NULL
(which is a pointer that casts to 0). For instance,
the string "HELLO" could be represented in
memory (with corresponding ASCII codes) as

follows.

"H"
"E"
"L"
"L"
"O"
NULL

Function argument passing

All function arguments in C are passed “by

value”: the function receives its arguments

through temporary local variables called

automatic variables (see Lec. 01.L for more

about automatic and global variables). When

it’s necessary to pass back an argument with a

changed value, the caller can provide the

function with the argument address via a

pointer, and the function must access the value

through the pointer. A potential alternative is a

global extern variable.

Literal of a long

For the compiler to recognize a literal number as

a long, it must have an L suffix. For instance, if

01 Computing principles, myRIO C programming, and high-level io driversL Lab Exercise: Introduction to myRIO C programming and high-level io drivers p. 1

val is a long variable and you want to compare
it to 32767:

if(val > 32767L) { /* validated! */ }

NULL detection

The following program gives some insight into

detecting a returned NULL.

1 #include "stdio.h"
2

3 int main() {
4 printf("%p\n",NULL); /* print as pointer */
5 printf("%d\n",(int) NULL); /* cast to int */
6 if (NULL == 0) {
7 printf("this works\n");
8 }
9 if (NULL == 0x0) {
10 printf("this works, too!\n");
11 }
12 if (NULL == NULL) {
13 printf("so does this!");
14 }
15 return 0;
16 }

1 0x0
2 0
3 this works
4 this works, too!
5 so does this!

Hex numbers—signed

In addition to the specifically C-related topics,

above, the following is useful for the first

assignment.

We can change the sign of a signed binary by

taking the two’s complement.

To put a negative hexadecimal number into a

signed hexadecimal form, take the sixteen’s

complement. Steps:

• take fifteen’s complement and

• add 1.

02 Computing principles, myRIO C programming, and high-level io driversLab Exercise: Introduction to myRIO C programming and high-level io drivers p. 2

Example Lab 01-1 re: Signed hexadecimal

Convert 3A to -3A.

02

Exploring C and mid-level io

