
02 Exploring C and mid-level io Exploring C operators p. 1

Table 02.1: C operator precedence and associativity.

Operator Description Associativity

() Parentheses (grouping) left-to-right
[] Brackets (array subscript)
. Member selection via object name
-> Member selection via pointer

++ -- Postfix increment/decrement (see Note 1)

++ -- Prefix increment/decrement right-to-left
+ - Unary plus/minus
! ~ Logical negation/bitwise complement
(type) Cast (change type)

* Dereference
& Address

sizeof Determine size in bytes

* / % Multiplication/division/modulus left-to-right

+ - Addition/subtraction left-to-right

<< >> Bitwise shift left, Bitwise shift right left-to-right

< <= Relational less than/less than or equal to left-to-right
> >= Relational greater than/greater than or equal to

== != Relational is equal to/is not equal to left-to-right

& Bitwise AND left-to-right

^ Bitwise exclusive OR left-to-right

| Bitwise inclusive OR left-to-right

&& Logical AND left-to-right

|| Logical OR left-to-right

?: Ternary conditional right-to-left

= Assignment right-to-left
+= -= Addition/subtraction assignment
*= /= Multiplication/division assignment
%= &= Modulus/bitwise AND assignment
^= |= Bitwise exclusive/inclusive OR assignment

<<= >>= Bitwise shift left/right assignment

, Comma (separate expressions) left-to-right

02.2 Exploring C—operator precedence and associativity

Table 02.1 lists all C operators in order of their

precedence (highest to lowest). Operators

within the same box have equal precedence.

Note 1—Postfix increment/decrement have

high precedence, but the actual increment or

decrement of the operand is delayed (to be

accomplished sometime before the statement

completes execution). So in the statement

02 Exploring C and mid-level io Exploring C operators p. 1

y = x * z++; the current value of z is used to
evaluate the expression (i.e., z++ evaluates to z)
and z only incremented after all else is done.

Operator precedence

When an expression contains two or more

operators, normal operator precedence rules are

applied to determine the order of evaluation. If

two operators have different levels of

precedence, the operator with the highest

precedence is evaluated first. For example,

multiplication is of higher precedence than

addition, so the expression 2+3*4 is evaluated as

3 * 4 // = 12
2 + 12 // = 14

The evaluation order can be explicitly controlled

using parentheses; e.g., (2+3)*4 is evaluated as

2 + 3 // = 5
5 * 4 // = 20

Operators in Table 02.1 are grouped from

highest to lowest precedence.

Operator associativity

If two operators in an expression have the same

precedence level, they are evaluated from left to

right or right to left depending on their

associativity. For example, addition’s

associativity is left-to-right, so the expression

2+3+4 is evaluated as (2+3)+4. In contrast, the
assign operator’s associativity is right-to-left; so

the expression x=y=z is evaluated as x=(y=z).

