
02 Exploring C and mid-level io Exploring C constants p. 1

02.3 Exploring C—compile-time integral constants

Often, we want to define a symbol that has a

single integral value—an integer—throughout

our program. Fortunately, C lets us do that

many ways. Unfortunately, it can be hard to

choose among them.

The primary ways are #defines (macros), enums
(enumerations), and const ints. When

choosing among them, our primary concerns

are code readability, debuggability, and

compile-time optimization.

Box 02.1 static is not constant

Several times thus far, including in the

listing of Fig. L.1, we have declared

static ints. These are variables not

constants, as their name might suggest.

Rather, they retain their value between

function calls—but that value can be

changed within the function (and the new

value retained).

The last of these means a compiler (or

preprocessor before the compiler) can replace

each instance of the symbol with its constant

value (since it never chances). There are subtle

differences in how each compiler works, but

most of the time all three of our options yield

replaced compile-time constants. However,

#defines are the best guarantee (because it
actually happens before compilation, via

preprocessing), enums a close second, and
const ints a respectable third.
In terms of debuggability, the rankings are

probably best reversed; that is, in decreasing

debuggability: const ints, enums, and
#defines. Macros (#defines) are most difficult
because the compiler can’t usually give useful

error codes related to them (since the compiler

typically knows nothing of them due to



02 Exploring C and mid-level io Exploring C constants p. 2

preprocessing).

Readability is rather subjective, but enums are
typically considered strong in this regard,

especially with its automatic enumeration of

symbols.

A way to demonstrate this is to show the same

example, written these three ways. Let’s define

an integral value to each day of the week, then

write a script that prints a value.

#include <stdio.h>
enum day {

sunday, monday, tuesday, wednesday,
thursday, friday, saturday

};
enum day today = monday;
enum day checkout = friday;

int main() {
printf("Checkout in %d days.", checkout-today);
return 0;

}

Checkout in 4 days.

#include <stdio.h>
#define sunday 0
#define monday 1
#define tuesday 2
#define wednesday 3
#define thursday 4
#define friday 5
#define saturday 6
#define today monday
#define checkout friday

int main() {
printf("Checkout in %d days.", checkout-today);
return 0;

}

Checkout in 4 days.

#include <stdio.h>
const int sunday = 0;
const int monday = 1;
const int tuesday = 2;
const int wednesday = 3;
const int thursday = 4;
const int friday = 5;



02 Exploring C and mid-level io Exploring C constants p. 3

const int saturday = 6;
const int today = monday;
const int checkout = friday;

int main() {
printf("Checkout in %d days.", checkout-today);
return 0;

}

Checkout in 4 days.

Preference among these three options is hotly

debated, but it seems enums are the most
readable and the “just right” option in terms of

reliable compile-time integral constant

replacement and debuggability.

It is important to remember that #defines can
be used for much more than integer

replacement: function-like macros, for instance,

are very useful.


