
02 Exploring C and mid-level io L Lab Exercise: Keypad mid-level primitives p. 1

02.L Lab Exercise: Keypad mid-level primitives

Objectives

In this exercise you will gain experience with:

1. Code requirements for character I/O of a

custom embedded computing application.

2. On-line debugging techniques.

Introduction

In Lab Exercise 01, we implemented a

general-purpose function double_in that
prompts the user to enter a floating-point value

on the keypad, and returns the result to the

calling program. That function calls the C

functions printf_lcd and fgets_keypad. These
functions, in turn, call other lower-level C

library functions according to the following

hierarchy. Functions provided by the me477
library, core C, or the standard C library will be

overwritten by those we write, which are shown

in green.

02 Exploring C and mid-level io L Lab Exercise: Keypad mid-level primitives p. 2

double_in (Lab 01) prompts LCD and returns keypad double

fgets_keypad (Lab 02) gets string from keypad← this lab!

getchar_keypad (Lab 02) gets char from keypad← this lab!

getkey (Lab 03) gets char from keypad

putchar_lcd (Lab 03) prints char to LCD

printf_lcd (Lab 01) prints string to LCD

putchar_lcd (Lab 03) prints char to LCD

vsnprintf (Lab 01) assigns to formatted string

sscanf (Lab 01) converts ASCII to binary

strstr (Lab 01) find string in string

strpbrk (Lab 01) find member in string

Continuing down the hierarchy, fgets_keypad
gets a string from the keypad. Due to time

constraints, we will not write it ourselves;

instead, we will use the me477 library version.
For reference and understanding, its source

code is displayed in the following listing.

char *fgets_keypad(char *buf, int buflen) {
char *bufend;
char *p;
int c;

p = buf; // buffer pointer
bufend = buf + buflen - 1; // last address in buffer
while (p < bufend) { // one exit condition
c = getchar_keypad(); // get char from char array
if (c == EOF) // another exit condition

break; // break while loop
*p++ = c; // write to buffer, increment pointer

}
if(p == buf) return NULL; // just ENTR
*p = '\0'; // write last character (NULL)
return buf;

}

This function gets one keypad character at a

02 Exploring C and mid-level io L Lab Exercise: Keypad mid-level primitives p. 1

time from the buffered getchar_keypad and
writes them to the character array buf via the
pointer provided as an argument of the

function. In this lab exercise, you will write the

lower-level getchar_keypad function. This
function acquires a single character from the

keypad. It must function identically to the

standard C function getchar that performs the
same operations for the standard I/O device

(the console). You should review the getchar
function in your C textbook.

In Lab Exercise 03, you will write the

lowest-level I/O functions getkey and
putchar_lcd.

Pre-laboratory preparation

Write the following functions and compile (and

debug) them before running them while

connected to lab hardware.

Writing the buffered function getchar_keypad

The prototype of the getchar_keypad function
should be as follows.

int getchar_keypad(void) // void means no args

Each time getchar_keypad is called it returns a
single character from the keypad; and it returns

EOF (defined in stdio.h) when it encounters its
representation of ENTR . In the example below

getchar_keypad is used to obtain a string of
characters until EOF is reached. The characters
are stored sequentially in a buffer pointed to by

point.

while ((ch=getchar_keypad()) != EOF) {
*point++ = ch;

}

There are two types of getchar functions in C.
The first type, called an unbuffered getchar,
simply returns the character to the calling

02 Exploring C and mid-level io L Lab Exercise: Keypad mid-level primitives p. 2

program immediately after each keystroke. The

second type, called a buffered getchar, collects
the characters entered by the user in a

temporary buffer. Pressing ENTR causes the block

of characters to be made available to the calling

program. You will write a buffered

getchar_keypad for the keypad.
The advantage of the buffered getchar is that
the user can edit the characters in the buffer

using the key in the usual manner, before

they are sent to the calling program. There is no

possibility of editing with the unbuffered

getchar.
You might wonder how a function designed to

return only a single character could edit the

whole buffer. This is accomplished by a simple

and elegant means inside getchar_keypad. The
key idea is to use a statically declared character

buffer. In this way, the characters remain in the

buffer in between calls to getchar_keypad. You
will also need to statically declare a pointer to

the buffer, and a variable (e.g. n) to keep count
of the number of characters in the buffer. A

schematic of the buffer, pointer, and count

variable is shown, below.

0 1 2 3 4 5 6 7 8 9 …

buffer C0 C1 C2 — — — — — — — …

↑
pointer n = 3

Here’s how the buffering scheme should work.

Whenever getchar_keypad is called either the
buffer is empty or the buffer contains one or

more characters.

The first time getchar_keypad is called, the
buffer is empty, the count is zero (n==0), and the
pointer is at the beginning of the buffer. The

function enters a loop, filling the buffer and

02 Exploring C and mid-level io L Lab Exercise: Keypad mid-level primitives p. 3

displaying the characters, one keystroke at a

time, until the ENTR key is pressed.

Each time through the loop, it checks if the

buffer is full. If it’s not, it completes the

following tasks:

1. enter the current character into the buffer

at the pointer’s pointee,

2. increment the pointer,

3. increment the character count, and

4. print the character to the LCD.

After ENTR is pressed, the buffer pointer is set

back to the beginning of the buffer, and the first

character (alone) is returned to the calling

program.

On subsequent calls to getchar_keypad the
buffer is not empty. For each call, the pointer is

incremented, the count is decremented, and the

character pointed to is returned to the calling

program. This continues until the last character

in the buffer is returned, and the pointer is

returned to the beginning of the buffer. Once

the buffer is empty, the next call to

getchar_keypad begins the filling process
again. Note: getchar_keypad should return EOF
to represent the ENTR key.

Putting these ideas together, algorithm

pseudocode (so far) for a buffered

getchar_keypadmight look like that of
Algorithm L.1, with

• n is the number of characters in the buffer,
• buf is a character array, of length buf_len

+ 2,
• p is a pointer that points to the location in
the buffer where the next character will be

put or taken, and

• chg is the current character from getkey.

Now, suppose that the is pressed while

characters are being entered. The deleted

character is effectively “removed” from the

02 Exploring C and mid-level io L Lab Exercise: Keypad mid-level primitives p. 1

Algorithm L.1 buffered getchar_keypad
pseudocode

function getchar_keypad
if n is 0 then . empty buffer!

point p to start of buf
while the chg is not ENTR do

if n < buf_len then
assign what getkey returns to

chg
assign chg to buf at p
increment p
increment n
print chg to LCD with

putchar_lcd
end if

end while
point p to start of buf

end if
if n > 1 then .more than one character in

buffer
decrement n
return *p++ . return the pointee then

increment
else if n is 1 then . one character in buffer

decrement n
return EOF

end if
end function

buffer by decrementing both the buffer pointer

p and the counter n. The deleted character is
removed from the display by moving the cursor

left one space, printing a space, and moving the

cursor left one space again. What should

happen if is pressed before any characters

have been entered (n==0)? Modify the pseudo

code above (and your program) to include this

“delete” functionality.

Writing the main function

Write a main function that tests your

getchar_keypad. It should collect at least two
separate strings using fgets_keypad (which
calls getchar_keypad).

02 Exploring C and mid-level io L Lab Exercise: Keypad mid-level primitives p. 2

Table L.1: (left) keypad key codes and (right) putchar_lcd escape
sequences.

key decimal code symbol

8 DEL
ENTR 10 ENT
- 45
. 46

0 – 9 48 – 57
UP 91 UP
DWN 93 DN

esc seq function

\f clear display
\b cursor left, 1 space
\v cursor to start of Line-1
\n cursor to start of Line-2

Background

To accomplish its task getchar_keypadmust
read characters from the keypad. The getkey
function returns a single key code for each

keystroke. Its prototype is as follows.

char getkey(void);

A call to getkeymight be: key = getkey();
Corresponding to each of the 16 keys of the

keypad, the key code is shown in Table L.1. The

symbols are #defined in the header file
me477.h.
In addition to getting keys, getchar_keypad
must be able to print characters -, ., and
decimal digits to the LCD screen. The me477
library function putchar_lcd should be used.
Its prototype is as follows.

int putchar_lcd(int c);

Both the input parameter and the returned

value are the character to be sent to the display.

The following are some examples of calls to

putchar_lcd.

ch = putchar_lcd('m');
putchar_lcd('\n');

It prints the character corresponding to its

argument on the LCD screen.

02 Exploring C and mid-level io L Lab Exercise: Keypad mid-level primitives p. 1

The putchar_lcd function uses the same escape
sequences, as shown in Table L.1, as

printf_lcd, which we wrote in Lab Exercise 01.

Laboratory Procedure

Test and debug your program.

Guidance

The following guidance is provided for this

week’s lab exercise.

Compile-time integral constants

Often, we want to define a symbol that has a

single integral value—an integer—throughout

our program. Fortunately, C lets us do that

many ways. Unfortunately, it can be hard to

choose among them.

The primary ways are #defines (macros), enums
(enumerations), and const ints. When

choosing among them, our primary concerns

are code readability, debuggability, and

compile-time optimization.

The last of these means a compiler (or

preprocessor before the compiler) can replace

each instance of the symbol with its constant

value (since it never chances). There are subtle

differences in how each compiler works, but

most of the time all three of our options yield

replaced compile-time constants. However,

#defines are the best guarantee (because it
actually happens before compilation, via

preprocessing), enums a close second, and
const ints a respectable third.
In terms of debuggability, the rankings are

probably best reversed; that is, in decreasing

debuggability: const ints, enums, and
#defines. Macros (#defines) are most difficult
because the compiler can’t usually give useful

error codes related to them (since the compiler

02 Exploring C and mid-level io L Lab Exercise: Keypad mid-level primitives p. 2

typically knows nothing of them due to

preprocessing).

Readability is rather subjective, but enums are
typically considered strong in this regard,

especially with its automatic enumeration of

symbols.

A way to demonstrate this is to show the same

example, written these three ways. Let’s define

an integral value to each day of the week, then

write a script that prints a value.

#include <stdio.h>
enum day {

sunday, monday, tuesday, wednesday,
thursday, friday, saturday

};
enum day today = monday;
enum day checkout = friday;

int main() {
printf("Checkout in %d days.", checkout-today);
return 0;

}

Checkout in 4 days.

#include <stdio.h>
#define sunday 0
#define monday 1
#define tuesday 2
#define wednesday 3
#define thursday 4
#define friday 5
#define saturday 6
#define today monday
#define checkout friday

int main() {
printf("Checkout in %d days.", checkout-today);
return 0;

}

Checkout in 4 days.

#include <stdio.h>
const int sunday = 0;
const int monday = 1;
const int tuesday = 2;
const int wednesday = 3;
const int thursday = 4;

02 Exploring C and mid-level io L Lab Exercise: Keypad mid-level primitives p. 1

const int friday = 5;
const int saturday = 6;
const int today = monday;
const int checkout = friday;

int main() {
printf("Checkout in %d days.", checkout-today);
return 0;

}

Checkout in 4 days.

Preference among these three options is hotly

debated, but it seems enums are the most
readable and the “just right” option in terms of

reliable compile-time integral constant

replacement and debuggability.

It is important to remember that #defines can
be used for much more than integer

replacement: function-like macros, for instance,

are very useful.

Assigning to a pointee

The function fgets_keypad, the source for
which is shown in the introduction to this lab,

was used in Lab Exercise 01. Recall that in

double_inwe supplied as arguments to
fgets_keypad a character array (pointer) and its
length. Instead of returning the string, the

function wrote to the character array it was

supplied—but remember: inside a C function

arguments are assigned automatic variables.

How does fgets_keypad assign to the array
when it knows only a pointer to its first element?

The secret sauce is to assign through a

dereferenced pointer. Examine the source for

fgets_keypad or consider the following
example.

#include <stdio.h>
void foo(int * p);

int main() {
static int x = 0;

03 Exploring C and mid-level io Lab Exercise: Keypad mid-level primitives p. 2

static int * p = &x;
printf("before: %d\n",*p);
foo(p);
printf("after: %d",*p);
return 0;

}

void foo(int * p) {
*p = 3;

}

before: 0
after: 3

Note that, while this sort of structure is rare

among higher-level programming languages, it

is quite common in C. For instance, fgets and
gets have this same feature.

03

Digital communication and low-level io

