
03 Digital communication and low-level io Exploring C structures p. 1

2. We follow Kernighan and Ritchie (1988, p. 129), where structures are
introduced via a double (2-tuple).

03.4 Exploring C—structures

C structures are used to group information that

belongs together. The quintessential example is

the tuple: coordinates that define a point.2 The

following example shows some of the syntax.

#include <stdio.h>

int main() {
struct point { // declare point

double x;
double y;

};
struct point pt1 = {1.2,4.5}; // declare instance
struct point pt2; // another instance
pt2.x = 2*pt1.x; // assign to second instance x
pt2.y = 3*pt1.y; // assign to second instance y
printf("pt2 = {%f,%f}",pt2.x,pt2.y);

}

pt2 = {2.400000,13.500000}

The first declaration struct point { ... }
shows that two double types of members that
are grouped into a structure with structure tag
point. The structure tag allows us to re-use this
template for further structure declarations, as
with pt1 and pt2—two instances of point.
Although, in this case, the two members are of

the same type (double), they need not be.
An instance of a structure can be assigned at
declaration, as with pt1, or it can be assigned
after declaration, as with pt2. The members of
an instance are accessed and written-to via the

name defined in the initial declaration, as in

pt2.x and pt2.y.
C structures can also be nested. For instance, a
line segment can be defined by two points, as

shown in the following snippet, which could be

interpolated into the previous main function.

struct segment { // declare segment
struct point pt1;
struct point pt2;

} seg1;



03 Digital communication and low-level io exe Exploring C structures p. 2

seg1.pt1 = pt1;
seg1.pt2 = pt2;
printf("seg1 is from {%f,%f} to {%f,%f}",

seg1.pt1.x,seg1.pt1.y,
seg1.pt2.x,seg1.pt2.y

);

Note that we can overload the names of

structure members such as pt1 and xwithout
conflict. Furthermore, the syntax that declares

seg1 can be used to declare further segments.
A function can be passed as an argument a

structure, or a pointer to it, or each of its
members, separately. Similarly, a function can

return structures in any of these ways. Note
that structure tags declared in main are
available to other functions.


