
04 Finite state machine control L Lab Exercise: Finite state machine motor control p. 1

3. We use the C notation that the integer 1 means boolean true and the
integer 0means boolean false.

04.L Lab Exercise: Finite state machine motor control

Objectives

The objectives of this exercise are to:

1. Become familiar with optical encoding.

2. Implement a finite state machine control

algorithm.

3. Understand pulse-modulation control of a

dc motor.

4. Use instruction timing to produce a

calibrated delay.

Introduction

In this exercise, your program will drive and

monitor the speed of a dc motor using a finite

state machine model. The myRIO will drive the

motor with pulse-width modulation (PWM) on

a DIO channel configured as a digital output.

This digital signal will be amplified by the

analog amplifier described in Lec. 04.2 , as

shown in Fig. L.1. The speed of the motor will

be measured with a quadrature encoder on the

motor and read by the myRIO FPGA encoder

counter. Two buttons connected to myRIO DIO

inputs will also control the operation of the

system.

Pulse-width modulation

Channel-0 of Connector A, the digital signal on

which we call run (the line over name denotes a
logical “not,” so we call this signal “not-run”), is

connected to a motor driver circuit such that

when run is 1 (high),3 no voltage is applied to

the motor; and when run is 0 (low), 20 V is

applied. Your program will periodically alter

this digital signal, applying an oscillating signal

to the motor. The duty cycle (the percentage of

time power is applied) is the percentage of time

the channel is low.

04 Finite state machine control L Lab Exercise: Finite state machine motor control p. 2

Current
Source
Amplifier

channel 0
run

stop

print

myRio
Connector-A

DC
Motor

Encoder

1
2
3
4
5
6
7

myRio
Encoder
Interface
Counter

Figure L.1: a schematic of the pulse-modulation via run DIO output, the
speed measurement via the FPGA encoder input, and the UI buttons print and
stop.

Encoder and counter

An optical encoder is mounted on the shaft of

the dc motor. The encoder is the Avago

HEDS-5640-A06. It is a quadrature encoder. It

has 500 lines (i.e. counts per revolution, CPR),

and two LED/Phototransistor pairs. The two

signals (e.g. A and B) are 90 degrees of phase
apart. If the encoder is rotating clockwise, A
leads B by 90 degrees. If the encoder is rotating

counter-clockwise A lags B by 90 degrees. This is

how direction is encoded. In total, then, there

are 4× 500 = 2000 state changes per revolution.

Therefore, each encoder state change

corresponds to a motor rotation of 1/2000

revolution, called a basic displacement

increment (BDI).

The two phases are connected to a quadrature

counter. The counter detects two state changes

(one down-to-up and one up-to-down) for each

line passage. Two changes for phase A and two

for phase B: a total of four state changes for each

line. So, for one revolution the counter totals

2000 state changes, and counts up or down

depending of which phase leads.

An encoder counter in the FPGA interface

determines the total number of these state

http://ricopic.one/resources/encoder_manual.pdf
http://ricopic.one/resources/encoder_manual.pdf

04 Finite state machine control L Lab Exercise: Finite state machine motor control p. 1

changes. The speed is determined by

computing the number of state changes from

the encoder during a certain time interval,

called the basic time interval (BTI). Therefore,

the number of state changes occurring during

each interval represents the angular speed of

rotation in units of BDI/BTI.

Initializing the encoder counter

Counting of the encoder state changes is

accomplished by the FPGA associated with the

Xilinx Z-7010 system-on-a-chip, with dual

Cortex-A9 ARM processors. The counter must

be initialized before it can be used. Initialization

includes identifying the encoder connection,

setting the count value to zero, configuring the

counter for a quadrature encoder, and clearing

any error conditions. The function

EncoderC_initialize, included in the me477
library, alters the appropriate control registers to

initialize the encoder interface on Connector C.

The prototype for the initialization function is:

NiFpga_Status EncoderC_initialize(
NiFpga_Session myrio_session,
MyRio_Encoder *channel

);

The first argument, myrio_session (type:
NiFpga_Session), identifies the FPGA session,

and must be declared as a global variable for

this application. That is, above main,

NiFpga_Session myrio_session;

The second argument channel (type:
MyRio_Encoder *) points to a structure that
maintains the current status and count value,

and must also be declared as a global variable.

We will use encoder #0. For example,

MyRio_Encoder encC0;

04 Finite state machine control L Lab Exercise: Finite state machine motor control p. 1

Reading the encoder counter

The position of the encoder (in BDI) may be

found at any time by reading the counter value.

The prototype of a library function provided for

that purpose is:

uint32_t Encoder_Counter(MyRio_Encoder* channel);

where the argument is the counter channel

declared during the initialization, and the

returned value is the current count in the form

of a 32-bit integer.

Pre-laboratory preparation

Main Program

Write a main program that produces a periodic

waveform on run that applies an average
voltage to the motor determined by the duty

cycle. The period and 1 BTI will be controlled by

calling N wait functions, each of which takes
the same deterministic amount of time. During

the firstM waits each period, voltage will be
applied to the motor. See the first graph in

Fig. L.2.

In addition, while Channel 7 of Connector A is

0, the program will print the measured speed on

the display at the beginning of each BTI. You

will control Channel 7 through a push button

switch. The corresponding run waveform is

shown in the second graph of Fig. L.2.

The algorithm should be implemented as a

finite state machine (see Lec. 04.4). As shown in

Fig. L.3, the machine will have five possible

states: high, low, speed, stop, and (the terminal)

exit. The inputs will be the Clock variable, and
channels 6 and 7 (for the stop and print buttons).
The outputs will be run, Clock (which
sometimes needs reset to 0), and the motor
speed printed to the LCD display. The

04 Finite state machine control L Lab Exercise: Finite state machine motor control p. 2

corresponding state transition table, listing all

possible transitions, is shown in Table L.1.

1 2 MN N... 1 2 M...

...

...
......

0 0

Clock

RUN = 1

RUN = 0

low
state

high
state

low
state

high
state

1 2 MN N... 1 2 M...

...

...
......

0 0

Clock

RUN = 1

RUN = 0

speed
state

low
state

high
state

speed
state

low
state

high
stateCh7=0

1 BTI

Ch7=1

Figure L.2: run waveforms for (top) when the print button is not
being pressed and (bottom)when the print button is being pressed.

highstop low

speed

Clock = N &&
Ch-6= 1 && Ch-7= 1

Clock = M / run = 1

Clock =0
run = 0

Clock = N &&
Ch-7=0 && Ch-6=1

Clock =0
run = 0

Clock = 1/ print speed

Clock = N
&& Ch-6=0 run = 0

Figure L.3: State transition diagram.

Overall, the main program will:

1. Use MyRio_Open to open the myRIO
session, as usual.

2. Setup all interface conditions and initialize

the finite state machine using

initializeSM, described, below.
3. Request, from the user, the number (N) of

wait intervals in each BTI.

04 Finite state machine control L Lab Exercise: Finite state machine motor control p. 1

Table L.1:×: irrelevant input,©: no change in output.

when and input is then output and make
state is state

stop print Clock run Clock speed
Ch6 Ch7 Ch0

high 1 1 N 0 0 © low
high 1 0 N 0 0 © speed
high 0 × N 0 0 © stop
low × × M 1 © © high
speed × × 1 © © print low
stop × × × © © © exit

4. See NiFpga_MyRio1900Fpga30.h and MyRio1900.h for more
description of the NI FPGA U8 Control enums that specify
register addresses. For instance, DIOA_158DIR is short for
NiFpga_MyRio1900Fpga30_ControlU8_DIOA_158DIR, which is at
address 0x181C6, and stores the “direction” (input or output) of a DIO
pin in the upper bank (pins 8–15) of Connector A.

4. Request the number (M) of intervals the

motor signal is “on” in each BTI.

5. Start the main state transition loop.

6. When the main state transition loop

detects that the current state is exit, it
should close the myRIO session, as usual.

Functions

In addition to main, several functions will be
required, as described, below. These functions

include one for each state: high for high, low for
low, speed for speed, and stop for stop.

double_in To execute the user I/O you may

use the routine double_in developed in
Lab Exercise 01, or you may simply call it

from the me477 library:

double double_in(char *string);

initializeSM Perform the following:

1. Initialize channels 0, 6, and 7 on

Connector A, in accordance with

Fig. L.1, by specifying to which

register each DIO corresponds. For

example, for Channel 6,4

Ch6.dir = DIOA_70DIR; // "70" used for DIO 0-7
Ch6.out = DIOA_70OUT; // "70" used for DIO 0-7
Ch6.in = DIOA_70IN; // "70" used for DIO 0-7
Ch6.bit = 6;

04 Finite state machine control L Lab Exercise: Finite state machine motor control p. 2

2. Additionally, initialize Connector A

DIO Channels 1 and 2 in the usual

way. Furthermore, set them to 1 and

0, respectively, via Dio_WriteBit.
(An example would be

Dio_WriteBit(&Ch1, NiFpga_True);
which sets Channel 1 to 1.) This sets

the motor direction via its input pins

INA and INB (1, 0 is “positive”

rotation and 0, 1 is “negative”). See

the motor driver manual for more

information.

3. Initialize the encoder interface. See

above.

4. Stop the motor (set run to 1).
5. Set the initial state to low.

6. Set the Clock to 0.

high If Clock is N, set it to 0 and run to 0.
If Ch7 is 0, change the state to speed.
If Ch6 is 0, change the state to stop.
Otherwise, change the state to low.

low If Clock is M, set run to 1, and change the
state to high.

speed Call vel. The function vel reads the
encoder counter and computes the speed

in units BDI/BTI. See vel below. Convert
the speed to units of revolutions/min.

Print the speed as follows:

printf_lcd("\fspeed %g rpm",rpm);
Finally, change the state to low.

vel Write a function to measure the velocity.

Each time this subroutine is called, it

should perform the following functions.

Suppose that this is the start of the nth BTI.

1. Read the current encoder count: cn

(interpreted as an 32-bit signed

binary number, int).
2. Compute the speed as the difference

between the current and previous

counts: (cn − cn−1).

http://ricopic.one/courses/me316_2017F/resources/pololu_VNH5019_motor_driver_carrier.pdf

04 Finite state machine control L Lab Exercise: Finite state machine motor control p. 3

3. Replace the previous count with the

current count for use in the next BTI.

4. Return the speed double to the
calling function.

Note: The first time vel is called, it should
set the value of the previous count to the

current count.

stop The final state of the program.

1. Stop the motor. That is, set run to 1.
2. Clear the LCD and print the message:

“stopping”.

3. Set the current state to exit. The
while loop in main should terminate
if the current state is exit.

4. Save the response to a Matlab file.

(See laboratory procedure of

Lec. 04.L.)

wait Your program will determine the time by

executing a calibrated delay-interval

function. Consider this “wait” function.

/*-----------------------------------
Function wait
Purpose: waits for xxx ms.
Parameters: none
Returns: none
-----------------------------------/
void wait(void) {

uint32_t i;

i = 417000;
while(i>0){

i--;
}
return;

}

Notice that the above program does

nothing but waste time! The compiler

generates the following operation codes

for this function. The first column contains

the addresses, and the second contains the

corresponding opcodes.

04 Finite state machine control L Lab Exercise: Finite state machine motor control p. 1

5. See Instruments (2013).

6. See ARM (2012), Appendix B.

wait+0 push {r11}
wait+4 add r11, sp, #0
wait+8 sub sp, sp, #12

wait+12 mov r3, #417000
wait+16 str r3, [r11, #-8]
wait+20 b 0x8ed4 <wait+36>

wait+24 ldr r3, [r11, #-8]
wait+28 sub r3, r3, #1
wait+32 str r3, [r11, #-8]
wait+36 ldr r3, [r11, #-8]
wait+40 cmp r3, #0
wait+44 bne 0x8ec8 <wait+24>

wait+48 nop ; (mov r0, r0)
wait+52 add sp, r11, #0
wait+56 ldmfd sp!, {r11}
wait+60 bx lr

The clock frequency of our microprocessor

is 667MHz.5 Note carefully how the

branch instructions are used. Determine

the exact number of clock cycles6 for the

code to execute, accounting for all

instructions. From that, calculate the delay

interval in ms.

When free running, the speed of the motor

is approximately 2000 RPM. Considering

all the above, determine a reasonable

value for N, the number of delay intervals

in a BTI. What inaccuracies or

programming difficulties are there in

using a delay routine for control and time

measurement?

Header files

The following header files will be required by

your code.

#include <stdio.h>
#include "Encoder.h"

04 Finite state machine control L Lab Exercise: Finite state machine motor control p. 1

#include "MyRio.h"
#include "DIO.h"
#include "me477.h"
#include <unistd.h>
#include "matlabfiles.h"

Modulo Arithmetic

We will estimate the rotational speed by

computing the difference between the current

encoder count cn and the previous count cn−1.

The counter is capable of counting up and

down, depending on the direction of rotation.

Interpreting the count as 32-bit signed binary,

the value is in the range [−231, 231 − 1]. For

example, starting from 0 and rotating in the

clockwise direction, the count will increase until

it reaches 231 − 1, then roll over to −231, and

continue increasing.

How will this rollover affect our estimate of the

velocity? Assume that the current and previous

counts (cn and cn−1) are assigned to signed

integer variables of width equal to that of the

counter. For our C compiler the int data type is
32 bits (4-bytes). Further assume that the

angular position of the encoder changes less

than 232/2000 revolutions (about 2million

revolutions!) during a single BTI. That is,

|cn − cn−1| < 232.

When we compute the difference between two

signed integer data types, the result is defined

by the offset modulo function:

mod(m,n, d) = m− n

⌊
m− d

n

⌋
(1)

wherem is the value, n is the modulus, d is the

offset, and bxc is the floor function (i.e. the
greatest integer less than or equal to x.) The

result is modulo-n, and always in the range

[d, d+ n− 1].

Then, for our case of int data, we estimate the
relative displacement using modulo 232, with

04 Finite state machine control L Lab Exercise: Finite state machine motor control p. 1

offset d = −231.

∆θ = mod(cn − cn−1, 2
32,−231)

= cn − cn−1 − 232
⌊
cn − cn−1 − (−231)

232

⌋
(2)

Let’s examine what happens when we cross the

rollover point. Suppose that the previous

counter value cn−1 was 231 − 2. And, that

during the BTI the encoder has moved forward

by +4, such that the current reading cn is

−231 + 2. The numerical difference cn − cn−1 is

−4, 294, 967, 292. However, applying Equation 2,

the 32-bit signed integer arithmetic gives the

correct result:

mod(−4294967292, 232,−231) = +4. Note that C

is automatically implementing Equation 2 and

this description is to deepen our understanding.

Laboratory Procedure

1. Examine the circuit on the breadboard on

Connector A of the myRIO. The push

button switches of Fig. L.4 connect

channels 6 and 7 to ground when pressed.

Note: These channels have pull-up

resistors.

Channel 6 or 7

Switch
Top View

Figure L.4:

2. Use the oscilloscope to view the waveform

produced by your program. For example,

use N = 5,M = 3.

3. Use the oscilloscope to view the start/stop

waveform produced by your program,

and to measure the actual length of a BTI.

Is it what you expect? If not, why not?

4. Repeat the previous step while printing

the speed (press the switch). What does

04 Finite state machine control L Lab Exercise: Finite state machine motor control p. 2

the oscilloscope show has happened to the

length of the BTI. What’s going on!?

5. Describe how you made this measurement

and discuss any limitations in accuracy. In

a later lab, we will find ways of

overcoming this limitation.

6. Recording a step response

After you have your code running as

described above, try this: Record the

velocity step response of the DC motor,

save it to a file and plot it in Matlab.

Here’s how:

Add code to your speed function to save
the measured speed at successive

locations in a global buffer. You will need

to keep track of a buffer pointer in a

separate memory location. Increment the

buffer pointer each time a value is put in

the buffer. The program must stop putting

values in the buffer when it is full. For

example,

#define IMAX 2400 // max points
static double buffer[IMAX]; // speed buffer
static double *bp = buffer; // buffer pointer

and, in the executable code,

if (bp < buffer+IMAX) *bp++ = rpm;

To record an accurate velocity,

temporarily comment-out the printf_lcd
statement in speed, and hold down the
Ch7 switch while you start the program.

7. Saving the response

The program should save the response

stored in the buffer to a Matlab (.mat) file
on the myRIO under the real-time Linux

operating system during the stop state.
See Resource 9 for more details.

The Matlab file must be called Lab4.mat.
In the file, save the speed buffer, the

values of N and M, and a character string

04 Finite state machine control L Lab Exercise: Finite state machine motor control p. 1

containing your name. The name string

will allow you to verify that the file was

filled by your program.

For your report, the array can be plotted

using the Matlab plot command.

a) From your plot, estimate the time

constant of the system. Plotting

points, instead of a continuous line,

will make interpretation easier.

b) What is the steady-state velocity in

RPM?

8. Extra: fixing theM = 1 case

You may have noticed that whenM = 1

the finite state machine does not function

as desired. What is wrong? How would

modifying the state transition diagram

correct this problem? How would you

modify the state transition table? Modify

your program to correct theM = 1 case.

Test the result.

A better way to PWM

In this exercise, among other things, we have

come to understand PWM and the limitations of

implementing it in the way we have.

Fortunately, there is a better way: using the

PWM capabilities from the FPGA, accessible via

PWM.h.
The PWM example (myRIO Example - PWM)
from the NI archive

C_Support_for_myRIO_v3.0.zip shows how to

do this. This method mitigates several of the

issues encountered in this exercise, especially

those related to duty-cycle resolution and

“jerky” operation due to low PWM rates. The

FPGA-based PWM can operate as high as 10

MHz, but, as with our finite state machine

implementation, loses duty cycle resolution as

its rate increases. So, although we have a higher

rate, and therefore more cushion, the same issue

http://www.ni.com/download/labview-myrio-toolkit-2015/5548/en/

04 Finite state machine control Lab Exercise: Finite state machine motor control p. 2

of balancing PWM frequency and duty cycle

resolution remain.

Of course, we still might need a finite state

machine for controlling the state at a

higher-level. For instance, we might include a

knob for controlling the duty cycle of the FPGA

PWM. This and the encoder, speed, and stop

functionality of the finite state machine of the

exercise could have a much lower frequency

(governed by wait) than the PWM. Decoupling

the timing for processes at much different rates,

like this, is typically advantageous.

04 Finite state machine control Lab Exercise: Finite state machine motor control p. 1

7. See http://www.malcolmmclean.site11.com/www/
MatlabFiles/matfiles.html.

Resource R9 Saving myRIO C data to a Matlab file

The following C functions7 write data of types

double or char to a Matlab .mat file. They are
included in the me477 library. Be sure to
#include "matlabfiles.h".
Use the following functions to open a named

file on the myRIO, and successively add any

number of data arrays, variables, and strings to

the file. Finally, close the file.

Open a .mat file The prototype for the open

function is

MATFILE *openmatfile(char *fname, int *err);

where fname is the filename, and err
receives any error code. The function

returns a structure for containing the

Matlab file pointer.

A typical call might be:

mf = openmatfile("Lab.mat", &err);
if(!mf) printf("Can't open mat file %d\n", err);

For this course, always use the file name:

Lab.mat. Notice the use of pointers.
Add a matrix The prototype of the function

for adding a matrix to the Matlab file is

int matfile_addmatrix(
MATFILE *mf,
char *name,
double *data,
int m,
int n,
int transpose

);

where mf is the Matlab file pointer from

the open statement, name is a char string
containing the name that the matrix will

be given in Matlab, data is a C data array

of type double, m and n are the array
dimensions, transpose takes value of 0 or
1 to indicate where the matrix is to be

transposed.

http://www.malcolmmclean.site11.com/www/MatlabFiles/matfiles.html
http://www.malcolmmclean.site11.com/www/MatlabFiles/matfiles.html

04 Finite state machine control Lab Exercise: Finite state machine motor control p. 2

For example, to add a 1-D matrix the call

might be

matfile_addmatrix(mf, "vel", buffer, IMAX, 1, 0);

Or, to add a single variable the call might

be

double Npar;
Npar = (double) N;
matfile_addmatrix(mf, "N", &Npar, 1, 1, 0);

Again, note the use of pointers, and the

cast to double.
Add a string The prototype of the function for

adding a string to the Matlab file is

int
matfile_addstring(

MATFILE *mf,
char *name,
char *str

);

where mf is the Matlab file pointer from

the open statement, name is a char string
containing the name that the matrix will

be given in Matlab, and str is the string.
For example, to add a string the call might

be

matfile_addstring(mf,"myName","Bob Smith");

Close the file After all data have been added,

the file must be closed. The prototype of

the function for closing the Matlab file is

int matfile_close(MATFILE *mf);

where mf is the Matlab file pointer from

the open statement.

For example, to close the Matlab file the

call might be

matfile_close(mf);

Example code Putting these ideas together:

mf = openmatfile("Lab.mat", &err);
if(!mf) printf("Can't open mat file %d\n", err);

04 Finite state machine control Lab Exercise: Finite state machine motor control p. 3

matfile_addstring(mf, "myName", "Bob Smith");
matfile_addmatrix(mf, "N", &Npar, 1, 1, 0);
matfile_addmatrix(mf, "M", &Mpar, 1, 1, 0);
matfile_addmatrix(mf, "vel", buffer, IMAX, 1, 0);
matfile_close(mf);

Transfer file to Matlab After the Lab.mat file
has been created, it can be transferred

directly to Matlab.

1. In Eclipse’s right pane of the Remote

Systems Explorer perspective, select

172.22.11.2, and select the icon
Refresh information of selected

resource.

2. Double click on the Matlab data file:

172.22.11.2>SftpFiles>MyHome>
Lab.mat.

3. The Lab.mat file will be opened in
Matlab on your laptop. Use Matlab’s

whos command to list all of the
named variables in the workspace.

4. In Matlab navigate to a convenient

folder on your laptop. Then, issue the

save('Lab.mat') command to save
the Matlab workspace, locally. The

file can later be opened from a Matlab

script, using the command

load('Lab.mat'), for plotting or
analysis.

Note: You will also find the Lab.mat file in
the RemoteSystemsTempFiles folder
within your workspace folder.

05 Finite state machine control Lab Exercise: Finite state machine motor control p. 1

Resource R10 Copley 412 analog amplifier setup

This should be adequate (and safe) for the

Clifton Precision JDH-2000-V-1C or similar dc

motor. It has a stall voltage of 24 V and stall

current of 2.18 A.

Resistor settings

• RH15 Peak Current 6.2 kΩ (20% of 20 A =

4 A)

• RH16 Continuous Current Limit 0 Ω (16%

of 20 A = 3.2 A)

• RH17 Peak Current Time Limit open (1
second)

• RH20 Armature Inductance 49.9 kΩ (0.6 to

1.9mH)

Capacitor settings

• CH18 Armature Inductance 4.7 nF (0.6 to

1.9mH)

Dip switch settings

• S1 Ground-active Enable OFF (up, away
from the board)

• S2 Torque Mode ON (down, toward the
board)

Gain adjustment

We will be operating the amplifier in TORQUE
MODE. For transconductance, (output current /
input voltage) = peak current / 10 V, which can

be set up with the following steps:

1. Set S2 ON.
2. Set Ref Gain fully CW.

3. Set Loop Gain fully CCW.

4. Adjust the transconductance gain to 4 A /

10 V.

a) To increase gain, turn Loop Gain CW.

05 Finite state machine control Lab Exercise: Finite state machine motor control p. 2

b) To decrease gain, turn Ref Gain CCW.

05

Threads and interrupts

