
05 Threads and interrupts Interrupts p. 1

05.2 Interrupts

Embedded computing frequently requires a

program to respond to events the timing of

which is unkown, beforehand. These events

include

• digital user input such as keypad and

button presses;

• other digital input such as limit switch

detection; and

• analog input such as sensor values.

One way to handle these types of events is to

frequently poll the analog and digital inputs in a

program’s main loop. However, there are two

drawbacks to this method: (1) events can be

missed if the inputs are polled too infrequently,

(2) it is difficult to control polling timing in a

loop that contains other processes, and (3) the

main loop’s timing can be affected by the

additional time it takes to handle the event.

The first and second concerns are mitigated by

using another method: threaded interrupt

handling. A new thread (in addition to the main

thread) is created to handle an interrupt. This

thread processes an interrupt service routine

(ISR) which checks to see if there has been an

interrupt request (IRQ) and, if so, responds to

the event. The IRQ can be expressed in memory

or externally on a programmable interrupt

controller (PIC). In either case, the ISR

frequently checks for the corresponding IRQ

and, once serviced, clears it. We call an IRQ-ISR

pair an interrupt.

Even when only a single core is available,

interrupts can be given high-priority by the OS

scheduler (via simultaneous multithreading)

such that the program will be responsive to

interrupts. Of course, unless the threads are run

on distinct cores, an interrupt thread does add

to the time of the iteration of the main loop (our



05 Threads and interrupts Interrupts p. 2

third concern from above). For some

applications (such as that of Lab Exercise 05),

this additional time is negligible. But for many

real-time applications, this will be problematic.

Mitigation can be achieved by using a timer

interrupt, which will be explored in Lab

Exercise 06.


