05.3 Boolean algebra on digital signals

We will require an understanding of Boolean algebra on digital signals to implement a switch debouncing circuit in Lec. 05.4 . It is a digital circuit that operates with logic gates, which are here introduced.

A digital signal's Boolean variable values 1 and 0 are isomorphic to propositional calculus's truth values \top (true) and \perp (false). Similarly, Boolean algebra (i.e. Boolean logic) operations are isomorphic to propositional calculus operations, such as not (\neg), and (\land), and or (\lor). Table 05.1 is a truth table for a number of Boolean algebra operators.

Digital electronics instantiate these operators as logic gates, sometimes as subcircuits of CPUs and sometimes as discrete integrated circuits for incorporation on a prototyping board (as in Lab Exercise 05) and eventually on a PCB. The simplest gate is the not gate, which has the following circuit symbol.

This gate accepts digital signal represented by Boolean variable p and returns $\neg p$. So, $p = 1 \Rightarrow \neg p = 0$ and $p = 0 \Rightarrow \neg p = 1$. Most gates have two inputs. For instance, the or gate, what has circuit symbol

 Table 05.1:
 a truth table for logic operations. The first two columns are operation inputs, the rest, outputs.

р	q				nand $p \uparrow q$			
0	0	1	0	0	1	1	0	1
0	1	1	0	1	1	0	1	0
1	0	0	0	1	1	0	1	0
1	1	0	1	1	0	0	0	1

Table 05.2:	logic operations and equivalent C expressions and gate	
symbols.		

name	logic	С	gate
not	¬p	i b	
and	$p\wedgeq$	p&&q	
or	$p\lorq$	p q	\rightarrow
nand	$p \uparrow q$! (p&&q)	
nor	$p\downarrowq$!(p q)	
xor	$p \stackrel{\vee}{=} q$	$p \mid =q$	
xnor	$p \Leftrightarrow q$	p==q	

$$p \rightarrow p \lor q$$

accepts digital signals with Boolean variables (say) p and q and returns $p \lor q$. Table 05.2 summarizes logic gates and their associated Boolean algebra operators.