
05 Threads and interrupts L Lab Exercise: Introduction to interrupts p. 1

05.L Lab Exercise: Introduction to interrupts

Objectives

The objectives of this exercise are to:

1. introduce the use of interrupts in I/O

programming,

2. introduce the use of multiple threads,

3. become familiar with digital signal

conditioning for interrupts, and

4. use TTL gates to “debounce” a switched

input.

Introduction

This exercise illustrates the use of interrupts,

originating from sources that are external to the

microcomputer. The principal activity of your

main program is to print the value of a counter

on the LCD display. If uninterrupted, the

counter display, which is updated once per

second, would continue for 60 counts.

Generally, the “service” of an interrupt, may be

arbitrarily complex in both form and function.

However, in this exercise, each time an interrupt

request (IRQ) occurs, the interrupt service

routine (ISR) thread will simply print out the

message, “interrupt_”. A push-button switch

on an external circuit will cause the IRQ to

occur.

Therefore, the overall effect will be that the

display will print the count repeatedly, with the

word “interrupt_” interspersed for each push
of the switch.

Although this program is not long, it is essential

that you understand the events that take place

at the time of the interrupt: (1) an unscheduled

(asynchronous) external event causes the

activity of the CPU to be suspended, and (2) a

separate section of code (ISR) executes, before

returning control to the original program at

05 Threads and interrupts L Lab Exercise: Introduction to interrupts p. 1

precisely the point where the execution was

interrupted. That the counter display continues

to run accurately both before and after the

interrupt illustrates that the main program is

not altered, regardless of where the interrupt

occurs in the execution.

The Threads

The main thread

The main program runs in the main thread. It

will perform the following tasks:

1. Open the myRIO session.

2. Register the interrupt and the digital input

(see below).

3. Create an interrupt thread to “catch” the

interrupt (see below).

4. Begin a loop. Each time through the loop:

• Wait one second by calling the (5ms)

wait function (from Lab Exercise 04)

200 times.

• Clear the display and print the value

of an int count.
• Increment the value of count.

5. After a count of 60, signal the interrupt
thread to stop, and wait until it terminates.

6. Unregister the interrupt.

7. Close the myRIO session.

The ISR thread

The ISR runs in an interrupt thread, separate

from the main thread. It should begin a loop

that terminates only when signaled by the main

thread. Within the loop it will:

1. Wait for an external interrupt to occur on

DIO0.
2. Service the interrupt by printing the

message: “interrupt_” on the LCD
display.

05 Threads and interrupts L Lab Exercise: Introduction to interrupts p. 1

3. Acknowledge the interrupt.

Background

Several library interrupt functions are used in

the following. For more documentation on

them, see Resource 11.

Setting up main for interrupts, generally

Within mainwe will configure the DI interrupt
and create a new thread to respond when the

interrupt occurs. The two threads communicate

through a globally defined thread resource

structure:

typedef struct {
NiFpga_IrqContext irqContext; // IRQ context reserved
NiFpga_Bool irqThreadRdy; // IRQ thread ready flag
uint8_t irqNumber; // IRQ number value

} ThreadResource;

National Instruments provides two C functions

to set up the digital input (DI) interrupt request

(IRQ).

Register the DI0 IRQ The first of these

functions reserves the interrupt from the FPGA

and configures the DI and IRQ. Its prototype is:

int32_t Irq_RegisterDiIrq(
MyRio_IrqDi* irqChannel,
NiFpga_IrqContext* irqContext,
uint8_t irqNumber,
uint32_t count,
Irq_Dio_Type type

);

where the five input arguments are:

1. irqChannel: a pointer to a structure
containing the registers and settings for

the IRQ I/O to modify; defined in DIIRQ.h
as:

05 Threads and interrupts L Lab Exercise: Introduction to interrupts p. 1

typedef struct{
uint32_t dioCount; // count register
uint32_t dioIrqNumber; // number register
uint32_t dioIrqEnable; // enable register
uint32_t dioIrqRisingEdge; // rising edge-trig reg.
uint32_t dioIrqFallingEdge; // falling edge-trig reg.
Irq_Channel dioChannel; // supported I/O

} MyRio_IrqDi;

2. irqContext: a pointer to a context
variable identifying the interrupt to be

reserved. It is the first component of the

thread resources structure.

3. irqNumber: the IRQ number (1–8).

4. count: the number times the interrupt
condition is met to trigger the interrupt.

5. type: the trigger type used to increment
the count.

The returned value is 0 for success.

Create the interrupt thread The second

function, pthread_create called from main,
creates a new thread and configures it to

“service” the DI interrupt. Its prototype is:

int pthread_create(
pthread_t *thread,
const pthread_attr_t *attr,
void * (*start_routine) (void *),
void *arg

);

where the four input arguments are:

1. thread: a pointer to a thread identifier.
2. attr: a pointer to thread attributes. In our

case, use NULL to apply the default
attributes.

3. start_routine: name of the starting
function in the new thread. The prototype

syntax means the function start_routine,
which will be given argument arg in the
new thread, should be given to

pthread_createwith no argument.

05 Threads and interrupts L Lab Exercise: Introduction to interrupts p. 1

3. Note: the IRQ channel settings symbols (and others) associated
with the DI interrupt, are defined in header files: DIIRQ.h and
IRQConfigure.h.

4. arg: the sole argument to be passed to
start_routine. In our case, it will be a
pointer to the thread resource structure

defined above and used in the second

argument of Irq_RegisterDiIrq.

This function returns 0 for success.

Setting up main for our interrupt, specifically

We can combine these ideas into a portion of the

main code needed to initialize the DI IRQ.3 For
interrupts on falling-edge transitions on DIO0 of
Connector A, assigned to IRQ 2, we have:

int32_t status;
MyRio_IrqDi irqDI0;
ThreadResource irqThread0;
pthread_t thread;
int i, j, count=0;

// Open the myRIO NiFpga Session.
status = MyRio_Open();
if (MyRio_IsNotSuccess(status)) return status;

// Configure the DI IRQ number, incremental times,
// and trigger type.
const uint8_t IrqNumber = 2;
const uint32_t Count = 1;
const Irq_Dio_Type TriggerType = Irq_Dio_FallingEdge;

// Specify the settings that correspond to
// the IRQ channel to be accessed.
irqDI0.dioChannel = Irq_Dio_A0;
irqDI0.dioIrqNumber = IRQDIO_A_0NO;
irqDI0.dioCount = IRQDIO_A_0CNT;
irqDI0.dioIrqRisingEdge = IRQDIO_A_70RISE;
irqDI0.dioIrqFallingEdge = IRQDIO_A_70FALL;
irqDI0.dioIrqEnable = IRQDIO_A_70ENA;

// Initiate the IRQ number resource of interrupt thread.
irqThread0.irqNumber = IrqNumber;

// Register DI0 IRQ. Terminate if not successful.
status=Irq_RegisterDiIrq(

&irqDI0,
&(irqThread0.irqContext),
IrqNumber,
Count,
TriggerType

);
if (status != NiMyrio_Status_Success) {

05 Threads and interrupts L Lab Exercise: Introduction to interrupts p. 1

printf(
"Status: %d\nConfiguration of DI IRQ failed\n",
status

);
return status;

}

// Set the indicator to allow the interrupt thread.
irqThread0.irqThreadRdy = NiFpga_True;

// Create interrupt threads to catch
// the specified IRQ numbers.
status = pthread_create(

&thread,
NULL,
DI_Irq_Thread,
&irqThread0

);

Other main tasks go here.
After the other main tasks are completed, it
should signal the new thread to terminate by

setting the irqThreadRdy flag in the
ThreadResource structure. Then, wait for the
thread to terminate. For example,

irqThread0.irqThreadRdy = NiFpga_False;
status = pthread_join(thread,NULL);

Finally, the interrupt must be unregistered:

status = Irq_UnregisterDiIrq(
MyRio_IrqDi* irqChannel,
NiFpga_IrqContext irqContext,
uint8_t irqNumber

);

using the same above arguments. To use the

pthread functions, #include <pthread.h> in
your code.

The ISR thread

This is the separate thread that was named and

started by the pthread_create function. Its
overall task is to perform any necessary function

in response to the interrupt. This thread will

execute until signaled to stop by main.

05 Threads and interrupts L Lab Exercise: Introduction to interrupts p. 2

4. For pointer to a structure struct * a with member name b, the
member value can be accessed with a->b, which is equivalent to (*a).b.

The beginning of the new thread is the starting

routine specified in the pthread_create
function called in main:
void *DI_Irq_Thread(void* resource).
The first step in DI_Irq_Thread is to cast its
input argument into appropriate form. In our

case, we cast the resource argument back to the
ThreadResource structure. For example, declare

ThreadResource* threadResource =
(ThreadResource*) resource;

The second step is to enter a loop. Two tasks are

performed each time through the loop, as

described in Algorithm L.1.

Algorithm L.1 ISR thread loop pseudocode

while the main thread has not signaled this
thread to stop do

wait for the occurrence (or timeout) of the
IRQ

if the numbered IRQhas been asserted then
perform operations to service the

interrupt (print interrupt_)
acknowledge the interrupt

end if
end while

Let’s explore how to do this. The while loop
should continue until the irqThreadRdy flag (set
in main) indicates that the thread should end.
For example:4

while (threadResource->irqThreadRdy == NiFpga_True) {
// stuff!

}

The two tasks within the loop are as follows.

1. Use the Irq_Wait function to pause the
loop while waiting for the interrupt. For

our case the call might be:

uint32_t irqAssert = 0;
Irq_Wait(

threadResource->irqContext,

05 Threads and interrupts L Lab Exercise: Introduction to interrupts p. 1

5. A bit flag is bit of independently useful information stored in a (larger)
integer variable. This is because a byte is the smallest addressable unit of
memory. Of course, multiple bit flags can be assigned to a single integer
variable.

6. The bitwise operator << shifts 1 of ...0001 left irqNumber bits. Then
the bitwise and & “bit masks” to see if any bits of both numbers match
(there’s only potentially one match, the irqNumber bit). Note that any
nonzero integer is considered true (1) for a conditional statement.

7. The switch is actually double-pole-double-throw (DPDT), but one
pole is disconnected.

threadResource->irqNumber,
&irqAssert,
(NiFpga_Bool*) &(threadResource->irqThreadRdy)

);

Notice that it receives the ThreadResource
context and IRQ number information, and

returns the irqThreadRdy flag set in the
main thread.

2. Because Irq_Wait times out after 100ms,
we must check the irqAssert bit flag5 to
see if our numbered IRQ has been

asserted.

In addition, after the interrupt is serviced,

it must be acknowledged to the scheduler.

For example, using bitwise operators,6

if (irqAssert & (1 << threadResource->irqNumber)) {
// Your interrupt service code here
Irq_Acknowledge(irqAssert);

}

The third step terminates the new thread and

returns from the function:

pthread_exit(NULL);
return NULL;

Laboratory procedure

Build, debug, and execute your program.

Provide interrupt signal by connecting the

single-pole-double-throw (SPDT)7 switch on the

circuit bread board to DIO0 of Connector A as

shown in Figure L.1. Try your program. What

happens? This undesirable phenomenon is

caused by the bounce of the mechanical switch.

Adjust the oscilloscope to examine the

high-to-low transition of the IRQ signal.

Typically, what length of time is required for

the transition to settle at the low level? How

many TTL triggers occur during the settling?

Correct the problem by replacing the switch in

Figure L.1 with the debouncing circuit shown in

05 Threads and interrupts Lab Exercise: Introduction to interrupts p. 2

IRQ
DIO0

myRIO

Vcc
Pull-Up
Resistor

On Bread
Board

Switch
Top View

Figure L.1: Connecting the interrupt signal to myRIO.

+5v

+5v

To DIO0

Q

Q*

1 2 3 4 5 6 7

891011121314

GND

SN74F38
Open-Collector
Quad NAND Gate

A

B

Vcc

Figure L.2: Debouncing circuit.

Figure L.2. This circuit incorporates a (TTL)

quad open-collector NAND gate (7401).

Box 05.1 caution

Be certain that Vcc and GND are connnected
to the chip before wiring the rest of the

circuit.

Try your program again. Explain, in detail, why

this circuit should solve the switch bounce

problem. That is, graph the time-history of

signals at points A and B that would occur

during the operation of a bouncing switch.

Then, graph the corresponding signals at Q and

Q∗.

Finally, in your own words, explain how the

main thread configures the interrupt thread,
how it communicates with the interrupt thread

during execution, and how the interrupt thread

functions.

05 Threads and interrupts Lab Exercise: Introduction to interrupts p. 1

Resource R11 Interrupt functions documentation

This resource includes some documentation of

functions from the National Instruments

C_Support_for_myRIO library (included in the
me477 library) used in Lab Exercise 05. For more
details, see the me477 library header files
DIIRQ.h and IRQConfigure.h and POSIX C

library pthread.h.

Register DI IRQ

Irq_RegisterDiIrq() Reserves the

interrupt from

FPGA and

configures DI IRQ.

Declared in the

DIIRQ.h header file.
Prototype:

int32_t Irq_RegisterDiIrq(
MyRio_IrqDi *irqChannel,
NiFpga_IrqContext *irqContext,
uint8_t irqNumber,
uint32_t count,
Irq_Dio_Type type

);

Arguments:

• irqChannel structure containing the
registers and settings for a digital IRQ I/O

• irqContext IRQ context to be reserved

• irqNumber the IRQ number

(IRQNO_MIN-IRQNO_MAX)
• count the incremental times that you use
to trigger the interrupt

• type the trigger type that you use to
increment the count

• return the configuration status

05 Threads and interrupts Lab Exercise: Introduction to interrupts p. 1

Unregister DI IRQ

Irq_UnregisterDiIrq() Clears the DI IRQ

configuration

setting. Declared

in the DIIRQ.h
header file.

Prototype:

int32_t Irq_UnregisterDiIrq(
MyRio_IrqDi *irqChannel,
NiFpga_IrqContext irqContext,
uint8_t irqNumber

);

Arguments:

• *irqChannel structure containing the
registers and settings for a digital IRQ I/O

• irqContext IRQ context to be reserved

• irqNumber the IRQ number

(IRQNO_MIN-IRQNO_MAX)

Wait for Interrupt

Irq_Wait() Wait until the specified IRQ

number occurred or ready

signal arrives. Declared in the

IRQConfigure.h header file.
Prototype:

void Irq_Wait(
NiFpga_IrqContext irqContext,
NiFpga_Irq irqNumber,
uint32_t *irqAssert,
NiFpga_Bool *continueWaiting

);

Arguments:

• irqContext context of current IRQ
• irqNumber IRQ number

• continueWaiting signal which aborts the
waiting thread

• return irqAssert asserted IRQ number

05 Threads and interrupts Lab Exercise: Introduction to interrupts p. 1

This is a blocking function that stops the calling

thread until the FPGA asserts any IRQ in the

number parameter, or until the function call

times out. The irqsAssert parameter can be
used to determine which IRQs were asserted for

each function call.

Acknowledge IRQ

Irq_Acknowledge() Acknowledges an IRQ

to the FPGA. Declared

in the IRQConfigure.h
header file.

Prototype:

void Irq_Acknowledge(
uint32_t irqAssert

);

Arguments:

• irqAssert asserted IRQ number

Create POSIX thread

pthread_create() Creates a new thread

within a process.

Declared in the

pthread.h header

file.
Prototype:

int pthread_create(
pthread_t *thread,
const pthread_attr_t *attr,
void *(*start_routine) (void *),
void *arg

);

Arguments:

• *thread new thread identifier

• *attr new thread attributes (NULL -
default)

• *start_routine starting function of new
thread

Threads and interrupts Lab Exercise: Introduction to interrupts p. 1

• *arg sole argument of start_routine
• return status = 0 for success

Join POSIX thread

pthread_join() Suspends execution of the

calling thread until the

target thread terminates.

Declared in the pthread.h
header file.

Prototype:

int pthread_join(
pthread_t thread,
void **retval

);

Arguments:

• thread thread identifier
• *retval if not NULL, copies the exit status
into the location pointed to by retval

• return status = 0 for success

Exit POSIX thread

pthread_exit() Terminates the calling

thread. Declared in the

pthread.h header file.
Prototype:

void pthread_exit(
void *retval

);

Arguments:

• *retval if not NULL, copies the exit status
into the location pointed to by retval

• return status = 0 for success

Part IV

Feedback Control of Mechanical

Systems

06

Discrete dynamic systems

Control systems engineers frequently need to

make a discrete embedded computer system

behave like a single-input-single-output (SISO)

dynamic system. The input and output for the

continuous system are continuous functions of

time. The corresponding input and output for a

discrete dynamic system are signals sampled

(Lec. 06.1) to form discrete time sequences, as

shown in Fig. 06.1.

A continuous system can be described by a

differential equation or transfer function that

operate on and returns continuous signals; A

discrete system can be described by a difference

equation (Lec. 06.2) or discrete transfer function

x(t) y(t)

Input Output

t t
Continuous

System

x(nT) y(nT)

Input Output

t t
Discrete
System

T

x(n) y(n)

n nSequences

0
3T 4T 5T 6T1T 2T

0
3T 4T 5T 6T1T 2T

0
3 4 5 61 2

0
3 4 5 61 2

Figure 06.1: continuous systems, discrete systems, and sequences.

06 Discrete dynamic systems p. 4

(Lec. 06.3) that operate on and returns

sequences.

In addition to discrete system dynamics

considerations, this chapter also introduces

timer interrupts (Resource 12) to improve

realtime performance. As an application of this

material, in Lab Exercise 06, we will learn how

to instantiate a dynamic system in our

microcontroller.

