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06.3 Discrete transfer functions

We begin with a review of Laplace transforms

and continuous transfer functions.

Laplace transforms

In the analysis of this continuous systems, we

use the Laplace transform, defined by

L (f(t)) =

ˆ ∞
0

f(t)e−stdt (1)

which leads directly to the familiar Laplace

transform properties (1) of linearity and (2) of

differentiation: the Laplace transform of the

derivative of a function f(t) (with zero initial

conditions) is s times the transform of the

function F(s) ≡ L(f(t)):

L

(
df(t)

dt

)
= sF(s). (2)

Continuous transfer functions

These properties allow us to find the transfer

function of a linear continuous system, given its

differential equation. We define the continuous

transfer function T(s) to be the Laplace

transform of the output Y(s) divided by the

Laplace transform of the input X(s); i.e.

T(s) =
Y(s)

X(s)
. (3)

Reconsider the continuous differential equation

for a dynamic system Eq. 1. The equivalent

transfer function, using the linearity and

differentiation properties of the Laplace

transform, is

T(s) =
βmsm + βm−1s

m−1 + · · ·+ β1s
1 + β0

αnsn + αn−1sn−1 + · · ·+ α1s
1
+α0

(4)

where αk and βk are the same constants that

appeared in Eq. 1.
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3. There are many more uses for z-transforms. For more details, see
Franklin, Powell and Workman (1998).

z-Transforms

For discrete systems and their difference

equations, a very similar procedure is available.

The z-transform F(z) ≡ Z (f(n)) of a sequence

f(n), with complex variable z (analogous to s), is

defined by3

Z (f(n)) =

∞∑
n=0

f(n)z−n. (5)

This leads directly to the z-transform properties

(1) of linearity and (2) of delay, analogous to (2)

for discrete systems: the z-transform of a

function delayed by one sample period is z−1

times the transform of the function F(z):

Z (f(n− 1)) = z−1F(z), (6)

Discrete transfer functions

We define the discrete transfer function T(z) to

be the z-transform of the output Y(z) divided by

the z-transform of the input X(z); i.e.

T(z) =
Y(z)

X(z)
. (7)

Given the z-transform properties, we can easily

find the transfer function of a discrete system

given its difference equation.

Example 06.3 -1 re: discrete transfer function

What is the discrete tranfer function

corresponding to the second-order difference

equation

a0y(n) + a1y(n− 1) + a2y(n− 2) =

= b0x(n) + b1x(n− 1) + b2x(n− 2) (8)

with constants an and bn?

The z-transform of the difference equation

is determined by linearity and successively



06 Discrete dynamic systems Discrete transfer functions p. 1

applying (6) to arrive at(
1+ a1z

−1 + a2z
−2

)
Y(z) =

(
b0 + b1z

−1 + b2z
−2

)
X(z).

(9)

Rearranging, the discrete transfer function is

Y(z)

X(z)
=

b0 + b1z
−1 + b2z

−2

1+ a1z−1 + a2z−2
(10)

Notice that the transfer function (10) and the

difference equation (8), can be derived from

each other by inspection. Notice also that the

transfer function of a discrete system is the ratio

of two polynomials in z, just as the transfer

function of a continuous system is the ratio of

two polynomials in s.

Discrete approximations of continuous transfer functions

There are several ways to derive an

approximate discrete transfer function from a

corresponding continuous transfer function. We

will use a popular technique called Tustin’s

method that approximates a continuous

function of time by straight lines connecting the

sampled points (i.e. trapezoidal integration).

The discrete transfer function is found using

Tustin’s method by making the following

substitution:

s 7→ 2

T

(
1− z−1

1+ z−1

)
(11)

and rewriting the transfer function in the form

of equation (10). Here, T is the sample period.

Example 06.3 -2 re: Tustin’s method

Consider a continuous first order system

described by the transfer function:

Y(s)

X(s)
=

1

τs+ 1
, where τ is the time constant.

(12)

Using Tustin’s method, derive a discrete

transfer function and the corresponding

difference equation.
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Substituting Equation 11 into the transfer

function, we have:

Y(z)

X(z)
=

α+ αz−1

1− (1− 2α)z−1
,

where α is a constant:

α =
T

2τ+ T

from which the difference equation can be

inferred (see Eqs. 8 to 10 above):

y(n) = (1− 2α)y(n− 1) + αx(n) + αx(n− 1)

Notice again that the current value of the output

y(n) depends on the previous output, y(n − 1),

and on the current and previous inputs, x(n)

and x(n− 1).

Notice also that the coefficients depend on

the time constant τ in the original continuous

system and on the sample period T .

During each sample period, the value of the

current value of the input x(n) is measured

and the current value of the output y(n) is

computed. Suppose that the time constant τ =

2, the sample period T = 1, and that the input

is a unit step (x(n) = 1 for all n), and the initial

condition y(0) = 0.

Then, from our solution for y(n),

y(n) = 0.6y(n− 1) + 0.4 (13)

and we can compute the output sequence:

y(0) = 0

y(1) = 0.6(0) + 0.4 = 0.4

y(2) = 0.6(0.4) + 0.4 = 0.64

y(3) = 0.6(0.64) + 0.4 = 0.784

y(4) = 0.6(0.784) + 0.4 = 0.870

...

Figure 06.1 shows plots of the input and output

sequences.
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Figure 06.1: input and output sequences.

The dotted line is the exact solution y(t/T) of the

original continuous differential equation. As

you can see, in this example, Tustin’s method

is very close to the exact solution at the sample

points.

See Resource 13 for a table of common

controller transfer functions converted to

discrete transfer functions via Tustin’s method.

Matlab’s c2d

The Matlab Control Systems Toolbox includes a

function c2d that computes the Tustin
equivalent discrete system sysd from the

continuous system sys, as follows.

sysd = c2d(sys, T, 'tustin')

This function can also use other common

techniques to yield a discrete approximation of

a continuous transfer function.


