
06 Discrete dynamic systems The biquad cascade p. 1

4. “Biquad” is short for “biquadratic.” The biquad transfer function has
second-order polynomials in both numerator and denominator.

06.4 The biquad cascade

Although we could implement Eq. 4 as shown,

the sensitivity of the output to the coefficients

leads to numerical inaccuracies as the order of

the system N becomes large. We will solve this

problem by breaking the Nth order system it

into a series of ns second-order systems.

The technique is called a biquad cascade and is

illustrated in Figure 06.1.

Notice that the output of each second-order

section (biquad)4 is the input to the subsequent

section. Each biquad implements the same

second-order difference equation, but with

different coefficients, inputs, and outputs.

For example, the current output yi(n) from the

ith section would be:

yi(n) =
1

a0i

(
b0i

xi(n) + b1i
xi(n− 1) + b2i

xi(n− 2) +

− a1i
yi(n− 1) − a2i

yi(n− 2)
)
.

(1)

Of course, a first or second order transfer

function would require only one biquad.

Depending on the value of N, some of the

coefficients of at least one biquad may be zero.

We will implement a function to handle any

value of N.

There are a variety of algorithms for breaking a

transfer function into biquadric sections.

Matlab’s Signal Processing Toolbox contains a

...

x(nT) y(nT)

x(nT) y(nT)

Input

Input

Output

Output

Nth Order
System

2nd
Order

2nd
Order

2nd
Order

2nd
Order

1 2 ns-1 ns

Figure 06.1: a biquad cascade.



06 Discrete dynamic systems The biquad cascade p. 2

function tf2sos (transfer function to second
order sections) for this purpose.



06 Discrete dynamic systems The biquad cascade p. 1

Resource R12 Timer interrupts

This resource describes how to program the

myRIO in C to perform timer interrupts.

Main thread: background

Initializing the timer interrupt is similar to

initializing the digital input interrupt.

We will use a separate thread to produce

interrupts at periodic intervals. Within main, we
will configure the timer interrupt and create a

new thread to respond when the interrupt

occurs. The two threads communicate through

a globally defined thread resource structure:

typedef struct {
NiFpga_IrqContext irqContext; // IRQ context reserved
NiFpga_Bool irqThreadRdy; // IRQ thread ready flag

} ThreadResource;

National Instruments provides C functions to

set up the timer interrupt request (IRQ).

Register the Timer IRQ

The first of these functions reserves the

interrupt from the FPGA and configures the

timer and IRQ. Its prototype is:

int32_t Irq_RegisterTimerIrq(
MyRio_IrqTimer* irqChannel,
NiFpga_IrqContext* irqContext,
uint32_t timeout

);

where the three input arguments are:

1. irqChannel: A pointer to a structure

containing the registers and settings for

the IRQ I/O to modify; defined in

TimerIRQ.h as:

typedef struct {
uint32_t timerWrite; // Timer IRQ interval register
uint32_t timerSet; // Timer IRQ setting register



06 Discrete dynamic systems The biquad cascade p. 1

5. The IRQ settings symbols associated with the timer interrupt, are
defined in the header file: TimerIRQ.h.

Irq_Channel timerChannel; // Timer IRQ supported I/O
} MyRio_IrqTimer;

2. irqContext: a pointer to a context
variable identifying the interrupt to be

reserved. It is the first component of the

thread resources structure.

3. timeout: the timeout interval in µs.

The returned value is 0 for success.

Create the interrupt thread

A new thread must be configured to service the

timer interrupt. In mainwe will use
pthread_create to set up that thread. Its
prototype is:

int pthread_create(
pthread_t *thread,
const pthread_attr_t *attr,
void *(*start_routine) (void *),
void *arg

);

where the four input arguments are:

1. thread: a pointer to a thread identifier.
2. attr: a pointer to thread attributes. In our

case, use NULL to apply the default
attributes.

3. start_routine: the name of the starting
function in the new thread.

4. arg: the sole argument to be passed to the
new thread. In our case, it will be a

pointer to the thread resource structure

defined above and used in the second

argument of Irq_RegisterDiIrq.

This function also returns 0 for success.

Main thread: our case

We can combine these ideas into a portion of the

main code needed to initialize the Timer IRQ.5



06 Discrete dynamic systems The biquad cascade p. 1

For interrupts triggered by the timer in the

FPGA, we have:

int32_t status;
MyRio_IrqTimer irqTimer0;
ThreadResource irqThread0;
pthread_t thread;

// Registers corresponding to the IRQ channel
irqTimer0.timerWrite = IRQTIMERWRITE;
irqTimer0.timerSet = IRQTIMERSETTIME;
timeoutValue = 5;
status = Irq_RegisterTimerIrq(

&irqTimer0,
&irqThread0.irqContext,
timeoutValue

);

// Set the indicator to allow the new thread.
irqThread0.irqThreadRdy = NiFpga_True;

// Create new thread to catch the IRQ.
status = pthread_create(

&thread,
NULL,
Timer_Irq_Thread,
&irqThread0

);

Other main tasks go here.
After the tasks of main are completed, it should
signal the new thread to terminate by setting the

irqThreadRdy flag in the ThreadResource
structure. Then it should wait for the thread to

terminate. For example,

irqThread0.irqThreadRdy = NiFpga_False;
status = pthread_join(thread, NULL);

Finally, the timer interrupt must be

unregistered:

status = Irq_UnregisterTimerIrq(
&irqTimer0,
irqThread0.irqContext

);

using the same arguments from above.



06 Discrete dynamic systems The biquad cascade p. 2

The interrupt thread

This is the separate thread that was named and

started by the pthread_create function. Its
overall task is to perform any necessary function

in response to the interrupt. This thread will

run until signaled to stop by main.
The new thread is the starting routine specified

in the pthread_create function called in main.
In our case:

void *Timer_Irq_Thread(void* resource).
The first step in Timer_Irq_Thread is to cast its
input argument (passed as void *) into
appropriate form. In our case, we cast the

resource argument back to a ThreadResource
structure. For example, declare

ThreadResource* threadResource =
(ThreadResource*) resource;

The second step is to enter a while loop. Two
functions are performed each time through the

loop, as described in Algorithm 06.1.

Algorithm 06.1 ISR thread loop pseudocode

while the main thread has not signaled this
thread to stop do

wait for the occurrence (or timeout) of the
IRQ

schedule the next interrupt
if the Timer IRQ has been asserted then

perform operations to service the
interrupt

acknowledge the interrupt
end if

end while

The while loop should continue until the
irqThreadRdy flag (set in main) indicates that
the thread should end. For example,

1. Use the Irq_Wait function to pause the
loop while waiting for the interrupt. For

our case the call might be, with

TIMERIRQNO a constant defining the Timer



06 Discrete dynamic systems The biquad cascade p. 3

IRQ’s IRQ number, defined in

TimerIRQ.h:

uint32_t irqAssert = 0;
Irq_Wait(

threadResource->irqContext,
TIMERIRQNO,
&irqAssert,
(NiFpga_Bool*) &(threadResource->irqThreadRdy)

);

Notice that it receives the ThreadResource
context and Timer IRQ number

information, and returns the

irqThreadRdy flag set in the main thread.
Schedule the next interrupt by writing the

time interval into the IRQTIMERWRITE
register, and setting the IRQTIMERSETTIME
flag. That is,

NiFpga_WriteU32(
myrio_session,
IRQTIMERWRITE,
timeoutValue

);
NiFpga_WriteBool(

myrio_session,
IRQTIMERSETTIME,
NiFpga_True

);

The timeoutValue is the number of µs
(uint32_t) until the next interrupt. The
myrio_session used in these functions
should be declared within this timer

thread. That is,

extern NiFpga_Session myrio_session;

This variable was defined when you called

MyRio_Open in the main thread.
2. Because the Irq_Wait times out after 100

ms, we must check the irqAssert flag to
see if the Timer IRQ has been asserted. In

addition, after the interrupt is serviced, it

must be acknowledged to the scheduler.

For example,



06 Discrete dynamic systems exe The biquad cascade p. 4

if(irqAssert & (1 << TIMERIRQNO)) { // Bit mask
// Your interrupt service code here
Irq_Acknowledge(irqAssert);

}

In the third step (after the end of the loop) we

terminate the new thread, and return from the

function:

pthread_exit(NULL);
return NULL;


