
06 Discrete dynamic systems L Lab Exercise: Transfer function generator p. 1

06.L Lab Exercise: Transfer function generator

Objectives

The objectives of this exercise are to:

1. Use real-time clock interrupts to provide

timing.

2. Implement an arbitrary transfer function

generator.

3. Introduce A/D and D/A conversion.

Introduction

In this lab exercise, you will write a general

purpose program capable of approximating the

performance of any SISO, LTI system! The

system input and output will both be analog

electrical signals. Your program will implement

this with a difference equation.

At the beginning of each BTI, your ISR will read

an analog input to obtain the current input

value, compute the current value of the output

y(n), and apply the current output value to an

analog output.

This process continues until is entered on

the keypad. The input voltage will be provided

by a function generator. Both the input and

output voltages will be displayed on the

oscilloscope.

You will use three new myRIO features in this

experiment: an interrupt timer, the ADC, and

the DAC. The first is described in detail in

Resource 12 and the others in Resource 14.

Although we could implement the difference

equation Eq. 4 as shown, the sensitivity of the

output to the coefficients leads to numerical

inaccuracies as the order of the system N

becomes large, so we use the biquad cascade

representation of Lec. 06.4 .



06 Discrete dynamic systems L Lab Exercise: Transfer function generator p. 1

Pre-laboratory preparation

The program consists of a main function and an
interrupt service routine (ISR) running in a

separate thread. The ISR is set to execute with a

period of 0.5ms (determined by the Timer IRQ),

and computes the DAC output from the ADC

input by means of a difference equation.

Main program

The only tasks of mainwill be the following.

1. Set up and enable the Timer IRQ interrupt,

2. Enter a loop, ending only when a is

received from the keypad. Use getkey.
3. Signal the timer thread to terminate using

the irqThreadRdy flag, and wait for it to
terminate.

Interrupt service routine

The interrupt service routine thread implements

a dynamic system. The heart of the ISR is a

while loop that checks the irqThreadRdy flag
(set in main) to see if the thread should continue.
Before the loop begins, initialize the analog

input/output, and set the analog output to 0 V.

Each time through the loop:

1. Get ready for the next interrupt by waiting

for the IRQ to assert. Then write the time

interval to wait between interrupts (BTI)

to the IRQTIMERWRITE register and write
TRUE to the IRQTIMERSETTIME register.

2. Read the analog input to obtain the

current input value x(n).

3. Call a function cascade (see below) to
calculate the current value of the output

y(n) by computing all of the sections in

the biquad cascade. Each biquad section is

computed according to Eq. 1.

4. Send the output value to the analog

output.



06 Discrete dynamic systems L Lab Exercise: Transfer function generator p. 2

5. Acknowledge the interrupt.

After the loop terminates, save the response to

Lab6.mat.
The ISR must allocate storage for variables and

arrays associated with the discrete dynamic

system, including:

1. the length of the BTI in microseconds,

2. the number of biquad sections ns, and

3. the system constants (ai and bi) for the

biquad sections.

The dynamic system corresponding to the

collection of biquad sections can be

conveniently referred to and manipulated by

first defining a structure to contain the

coefficients and previous values of input and

output for a single biquad section. We might

define a “biquad” structure as follows.

struct biquad {
double b0; double b1; double b2; // numerator
double a0; double a1; double a2; // denominator
double x0; double x1; double x2; // input
double y1; double y2; // output

};

This definition should be placed just before the

prototypes section of your program.

Then, a specific dynamic system can be defined

as an array of these biquad structures, each

array element corresponds to an individual

biquad section:

int myFilter_ns = 2; // No. of sections
uint32_t timeoutValue = 500; // T - us; f_s = 2000 Hz
static struct biquad myFilter[] = {

{1.0000e+00, 9.9999e-01, 0.0000e+00,
1.0000e+00, -8.8177e-01, 0.0000e+00, 0, 0, 0, 0, 0},
{2.1878e-04, 4.3755e-04, 2.1878e-04,
1.0000e+00, -1.8674e+00, 8.8220e-01, 0, 0, 0, 0, 0}

};

This system description can be placed within

the ISR, near its beginning. The first two lines



06 Discrete dynamic systems L Lab Exercise: Transfer function generator p. 1

establish the number of biquad sections, and the

length of the BTI in microseconds. Finally,

myFilter is the name of an array of biquad
structures being initialized.

For testing purposes, the initialized constants in

the example above correspond to a system of

two biquad sections (ns = 2), encoding a

unity-gain low-pass filter, with sampling

frequency of 2000 Hz. Derived using Tustin’s

method, they correspond to a third-order

continuous system having a pair of complex

poles with natural frequency of 40 Hz, and with

damping ratio 0.5. The remaining real pole is at

40 Hz.

Crazy about pointers!

The most challenging part of this task is the

calculation of the current output value y(n). The

use of pointers makes the calculation both

straightforward and efficient.

Box 06.1 hint

Don’t be tempted to code this algorithm

using array indices (instead of pointers);

that would be much too slow for our

purposes.

The cascade function

The cascade function implements the complete
dynamic system by passing the measured input

through the string of biquad sections. The ISR

must pass to cascade the value of the current
input x(n)measured by the ADC, the number of

biquad sections ns, the array of biquad

structures containing the coefficients and

history variables (xi and yi) for all sections. It

might have a prototype that looks like:

double cascade(
double xin, // input



06 Discrete dynamic systems L Lab Exercise: Transfer function generator p. 1

struct biquad *fa, // biquad array
int ns, // no. segments
double ymin, // min output
double ymax // max output

);

Here, xin is the current system input, fa is the
name of an array of biquad structures, ns is the
corresponding number of biquad sections, and

ymin and ymax are the saturation limits.
In the above example, myFilterwould be
passed through fa. The value returned by
cascade is the current value of the system
output y(n).

Coding cacade

An efficient way to code cascade is to allocate a
pointer f in cascade that will be used to point to
elements of the array of biquad structures.

Begin the function by equating the pointer to the

first element in the array (i.e. the first biquad):

f = fa;. Variables inside the biquad structure
are accessed by using the pointer name, e. g.

f->a0, f->b0, f->x0, f->y1, etc. (The ->
operator is equivalent to dereferencing and then

accessing a member (say, (*f).a0) and is typed
as a minus sign immediately followed by >.)
Then, loop ns times, to cycle through each of the

biquad sections in the array. At the beginning of

each loop, the output value y0 of previous
biquad must be passed to the input value f->x0
of the current biquad.

Within the loop, coding the output value y0
might look like:

y0 = (
f->b0*f->x0 + f->b1*f->x1 + // ... etc.

)/f->a0;

See Equation 1.

Each time through the loop, after the output

value has been computed, the previous values x



06 Discrete dynamic systems L Lab Exercise: Transfer function generator p. 1

and ymust be updated, so that they will be

correct at the next time step. For example,

f->x2 = f->x1; f->x1 = f->x0; // ... etc.

At the end of the loop, the pointer f is
incremented to advance to the next biquad in

the array.

One more point: if the DAC is given a value

beyond its range [−10,+10] V, it will saturate its

output value appropriately. However, our

difference equation Eq. 1 depends on previous

values of the output, but doesn’t saturate. To

correct this disparity, cascade should saturate
the output y0 of the final biquad before it is
saved for the next iteration.

For example, define the macro

#define SATURATE(x,lo,hi) { \
((x) < (lo) ? (lo) : (x) > (hi) ? (hi) : (x)) \

}

Pass appropriate values of the xmin and xmax
parameters to cascade. Then, for the last
biquad, immediately after y0 is computed,
saturate its value:

y0 = SATURATE(y0, ymin, ymax);

Laboratory Procedure

A good strategy to follow in writing this

program is to first implement and debug

everything except the calculation of the biquad

cascade. That is, set up the main program and

the ISR, including all arrays and timing. In the

ISR, simply pass the input value from the ADC

directly to the DAC. For example,

VADin = Aio_Read(&CI0);
Aio_Write(&CO0, VADin);

This will allow you to observe the input and

output on the oscilloscope, and determine if the

interrupt timing is functioning properly.



06 Discrete dynamic systems L Lab Exercise: Transfer function generator p. 1

6. To simulate the theoretical response, Matlab’s lsim is a good choice.

When you have debugged those portions of the

program augment the code above with the call

to cascade.

Does it work?

The low-pass digital filter described above was

derived using Tustin’s method from the transfer

function of the three-pole continuous system:

Vout(s)

Vin(s)
=

ω3
n

(s+ωn)(s2 + 2ζωns+ω2
n)

(1)

where ωn = 2π× 40 rad/s, and ζ = 0.5. This

system belongs to a class of filters called

Butterworth filters. They are signal processing

filters designed to have the flattest possible

frequency response in the passband.

Step response

Using the oscilloscope (DC coupled), observe

the step response of the system by applying a

low frequency square wave (e.g. at 8 Hz) with

an amplitude of 5 V as the input with the

function generator.

Save the input and output of cascade in
500-point buffers. After the timer loop ends,

save the buffers to Lab6.mat, and transfer the
data to Matlab. Plot and compare the measured

step response to the theoretical response of the

corresponding continuous system.6. Explain.

Frequency response

Again, using the oscilloscope (AC coupled),

observe the frequency response by altering the

frequency of a 5 V input sine wave.

Record (write down) the amplitude and phase

of the output relative to the input sine wave at

the following frequencies:

[5, 10, 20, 40, 60, 100, 140, 200] Hz. Given the input

amplitude, compute the transfer function

magnitude (dB) at each frequency.



06 Discrete dynamic systems Lab Exercise: Transfer function generator p. 2

7. To generate the data for this plot, Matlab’s bode is a good choice. Note
that the specifications for the plot format require you to generate the plot
separately from your call to bode.

In Matlab, plot the theoretical magnitude (dB)

and phase (deg) versus the frequency (Hz on a

logarithmic scale) for the continuous system

transfer function.7 Plot the corresponding

measured data as discrete symbols on top of the

theoretical frequency response. Explain.



06 Discrete dynamic systems Lab Exercise: Transfer function generator p. 1

Resource R13 Discrete-time controllers

For reference, Table 06.1 contains Tustin

equivalents for some common continuous-time

controllers.

Table 06.1: Tustin equivalents for common continuous-time controllers.
Usage of z is contextual, meaning a zero in continuous transfer functions and
meaning the z-transform z in discrete transfer functions.

phase lag/lead PI PID

continuous k
s+ z

s+ p
Kp +

Ki

s
Kp +

Ki

s
+ Kds

discrete k
b0 + b1z

−1

a0 + a1z−1

b0 + b1z
−1

a0 + a1z−1

b0 + b1z
−1 + b2z

−2

a0 + a1z−1 + a2z−2

differential equation
dy

dt
+ py = k

(
dx

dt
+ zx

)
y = Kpx+ Ki

ˆ t

0

xdt y = Kpx+ Ki

ˆ t

0

xdt+ Kd
dx

dt

difference equation

y(n) = −
a1

a0
y(n− 1)

+
b0

a0
x(n)

+
b1

a0
x(n− 1)

y(n) = −
a1

a0
y(n− 1)

+
b0

a0
x(n)

+
b1

a0
x(n− 1)

y(n) = −
a1

a0
y(n− 1)

−
a2

a0
y(n− 2)

+
b0

a0
x(n)

+
b1

a0
x(n− 1)

+
b2

a0
x(n− 2)

a0 1 1 1

a1 (pT − 2)/(pT + 2) −1 0

a2 −1

b0 k(zT + 2)/(pT + 2) Kp + KiT/2 Kp + KiT/2+ 2Kd/T

b1 k(zT − 2)/(pT + 2) −Kp + KiT/2 KiT − 4Kd/T

b2 −Kp + KiT/2+ 2Kd/T



06 Discrete dynamic systems Lab Exercise: Transfer function generator p. 1

Resource R14 Analog input and output

Analog initialization

For our project, we will use the analog input

channel CI0 and the analog output channel CO0
on Connector C. They communicate with the

processor through the FPGA.

Before they can be used, they must be initialized

using

AIO_initialize(&CI0, &CO0);

Call it once, where CI0 and CO0 are structures
that must be of type MyRio_Aio. This
initialization function is included in the me477
library.

Analog-to-digital converter

The single-channel 12-bit analog-to-digital

converter (ADC) measures the current value of

the applied voltage in the range

[−10.000,+9.995] V. Voltages outside that range

saturate the conversion as shown in Figure 06.1.

The ADC has a resolution of 4.883 mV, with

absolute accuracy of ±200mV. Each channel has
input impedance of > 500 kΩ and overload

protection of ±16 V.
Our library contains a function that reads a

specified channel of the ADC and returns the

converted value. Its prototype is:

double Aio_Read(MyRio_Aio* channel);

+10 V

Converted
Value

ADC
Input
Voltage-10 V

-10 V

0 V

+10 V

Figure 06.1: ADC saturation.



07 Discrete dynamic systems Lab Exercise: Transfer function generator p. 1

+10 V

Converted
Output Value

Specified
DAC
Voltage
Value

-10 V

-10 V

0 V

+10 V

Figure 06.2: DAC saturation.

where channel is the pointer to the channel
structure defined above: &CI0.

Digital-to-analog converter

The single-channel 12-bit digital-to-analog

converter (DAC) produces a voltage at the

output terminal in the range [−10.000,+9.995] V.

Again, specified voltages outside that range

saturate the conversion as shown in Figure 06.2.

The DAC has a resolution of 4.883mV, with

absolute accuracy ±200mV. Each channel has a
maximum drive current of 3mA, a maximum

slew rate of 2 V/µs, and an overload protection

of ±16 V.
Our library contains a function that accepts a

specified channel for the DAC, and returns the

converted value. Its prototype is:

void Aio_Write(MyRio_Aio* channel, double value);

where channel is the pointer to the channel
structure defined above: &CO0 and value is the
specified value of the analog output voltage.



07

Closed-loop control


