
07 Closed-loop control L Lab Exercise: DC motor PI velocity control p. 1

07.L Lab Exercise: DC motor PI velocity control

Objectives

The objectives of this exercise are to:

1. Incorporate many of the hardware and

software elements developed previously

in this course into an integrated

closed-loop control system.

2. Implement a program structure allowing

continuous modification of the control

parameters without halting the control

algorithm.

3. Implement a proportional-integral (PI)

velocity control algorithm for the DC

motor.

Introduction

In this exercise, a closed-loop control system for

the DC motor will be developed. This system is

similar to actuators used in many types of

positioning systems. The primary drive of one

axis of an automated machine tool or of one axis

of motion of an industrial robot is often a

computer-controlled DC motor.

Our system will control the motor speed. The

control algorithm will repeatedly compare the

actual velocity of the motor Vact with the desired

reference velocity Vref, and automatically alter

the applied control voltage to correct any

differences. Although this is not a trivial

computer control task, you have developed

nearly all the required elements in the

preceding six exercises.

The optical encoder (through the FPGA), the

D/A converter (connected to the motor

amplifier), and the periodic timer interrupt, will

be combined to control the DC motor. As in Lab

Exercise 06, a separate timer thread will

produce an interrupt at the end of each basic



07 Closed-loop control L Lab Exercise: DC motor PI velocity control p. 2

LCD Display

Keypad

Current
Amplifier

Encoder

Xilinx Zynq-7010

NI myRIO-1900

FPGA

Processors

AO

DIODIO

UART

/
8

DC
Motor/

2

Figure L.1:

time interval (BTI). The ISR will load the

IRQTIMERWRITE and IRQTIMERSETTIME registers
to schedule the next BTI, and then call functions

to:

1. read the encoder counter and compute the

velocity,

2. execute the motor control algorithm, and

3. save the results, as necessary.

The control system will be “table-driven.” That

is, the parameters used by the control algorithm

(reference speed, system gains, and BTI length)

will be kept in a special table of values. Through

the keypad/LCD, the values of the parameters

in the table will be altered (interactively) by a

“table editor” function called from the main

program thread. The only tasks of the table

editor will be to change the table values in

response to commands from the keypad, and to

display performance information.

This table-driven structure will allow the

program user to change any of the control

parameters, at any time, without stopping the

execution of the control algorithm. It will

appear as though two programs, the table editor

and the control algorithm, are executing

simultaneously.

You will not write the table editor. The required

function, ctable2 is described in Resource 15. It



07 Closed-loop control L Lab Exercise: DC motor PI velocity control p. 1

Vref(s) Vact(s)+

-

e(s)

PI Controller

u(s)
H(s)Kp+ Ki

s Output

Motor

error control

Figure L.2: continuous representation of the control loop.

has been included in our library, and is

automatically linked with your program.

Although you will not write this function, it

uses the basic keypad/display algorithms that

you developed in Lab Exercises 01, 02 and 03.

The prototype for ctable2 is in ctable2.h.
The motor will be controlled using a

proportional-plus-integral (PI) control law as

shown in Figure L.2. The PI control law relates

the error e(t) to the output control signal u(t)

using the gain constants Kp and Ki.

Applying Tustin’s method to the continuous

controller transfer function Kp + Ki

s , the

corresponding discrete transfer function is

U(z)

E(z)
=

b0 + b1z
−1

a0 + a1z−1
, (1)

where

a0 = 1, a1 = −1, b0 = Kp +
1

2
KiT, and b1 = −Kp +

1

2
KiT.

(2)

where T is the sample time, and the error is

e(n) = Vref(n) − Vact(n)

For more on Tustin’s method, see Lec. 06.3 . You

will implement the corresponding difference

equation using the general-purpose algorithm

you developed in Lab Exercise 06.

Pre-laboratory preparation

Drawing on your previous work, write two

threads to: (1) communicate with the user and

(2) control the motor.



07 Closed-loop control L Lab Exercise: DC motor PI velocity control p. 1

Two threads

Main program thread The main program

performs these tasks:

1. Initialize the table editor variables.

2. Set up and enable the timer IRQ interrupt

(as in Lab Exercise 06).

3. As in Lab Exercise 06, register the Timer

Thread and create the thread to catch the

Timer Interrupt. In this lab, the Timer

Thread will gain access to the table data

through a pointer. Modify the Timer

Thread resource to include a pointer to the

table. For example,

typedef struct {
NiFpga_IrqContext irqContext; // context
table *a_table; // table
NiFpga_Bool irqThreadRdy; // ready flag

} ThreadResource;

4. Call the table editor. The table should

contain six values, labeled as shown:

V_ref: rpm {edit}
V_act: rpm {show}
VDAout: mV {show}
Kp: V-s/r {edit}
Ki: V/r {edit}
BTI: ms {edit}

All of the table edit values should be

initialized to zero, except for the BTI

length, which should be 5ms. Note the

units.

After the main program calls the table

editor, the user may edit and view the

table values whenever desired.

5. When the table editor exits, signal the

Timer Thread to terminate. Wait for it to

terminate.

Timer thread – ISR At the beginning of the

starting function, declare convenient names for

the table entries from the table pointer:



07 Closed-loop control L Lab Exercise: DC motor PI velocity control p. 1

double *vref = &((threadResource->a_table+0)->value);
double *vact = &((threadResource->a_table+1)->value);
// ...etc.

As in Lab Exercise 06, the Timer Thread

includes a main loop timed by the IRQ, and is

terminated only by its ready flag.

Before the loop begins:

• initialize the analog I/0, and set the motor

voltage to zero, using Aio_Write (as is Lab
Exercise 06).

• Set up the encoder counter interface (as in

Lab Exercise 04).

Each time through the loop of the it should:

1. Get ready for the next interrupt by:

waiting for the IRQ to assert, writing the

Timer Write Register, and writing TRUE to
the Timer Set Time Register.

2. Call vel, from Lab Exercise 04, to measure

the velocity of the motor.

3. Compute the current coefficients (a’s and

b’s) for the PI control law from the current

values of Kp and Ki. See Equation 1.

Update the values of the biquad structure.
4. Compute the current error Vref − Vact.

5. Call cascade to compute the control value
from the current error using the difference

equation for PI control law. Important:

limit the computed control value to the

range [−7.5, 7.5] V.

6. Send the control value to the D/A

converter CO0 using Aio_Write.
7. Change the show values in the table to

reflect the current conditions of the

controller.

8. Save the results of this BTI for later

analysis. (See below.)

9. Acknowledge the interrupt.



07 Closed-loop control L Lab Exercise: DC motor PI velocity control p. 1

Functions

cascade – The cascade function, called once,
from the ISR, during each BTI, implements the

general-purpose linear difference equation

algorithm from Lab 06. For this lab use the same

C code that you used in Lab Exercise 04. In this

case, the number of biquad sections will be one.

Note that, as in Lab Exercise 06, all calculations

should be made in (double) floating-point
arithmetic.

vel – Use the vel function, developed in Lab
Exercise 04, to read the encoder counter and

estimate the angular velocity in units of

BDI/BTI.

Saving the Responses

A convenient method of saving the data is to

define data arrays in the ISR for both the

velocity and the torque. Then an

auto-incremented index variable is used to store

the data in the arrays during each BTI.

Increment the index as needed, stopping when

index reaches the length of the arrays. A

convenient length would be 250 points each.

Since our program runs continuously, you may

wish to save the response whenever the

reference velocity is changed. This is easily

accomplished by checking to see if the reference

velocity has changed since the last BTI, and

resetting the index to zero if it has. Since the

index is then less than the length of the arrays,

the arrays will be refilled. This is equivalent to

recording the response to a step input in the

reference velocity.

In addition, when the ISR resets the index to

zero, save the previous value of the reference

velocity. That value, along with other system

parameters, will be used in MATLAB to predict

the theoretical model response.



07 Closed-loop control L Lab Exercise: DC motor PI velocity control p. 1

Table L.1: the base set of controller parameters.

Vref ±200 rpm

BTI length 5 ms

Kp 0.1 V-s/rad

Ki 2.0 V/rad

After the main loop terminates, but while still in

the Timer Thread, write the results to the

Lab7.mat file. The results should include:

1. your name (string),

2. the actual velocity array (rad/s),

3. the torque array (N-m),

4. the current and the last, previous reference

velocities (rad/s),

5. Kp (V-s/rad),

6. Ki (V/rad), and

7. BTI length (s).

Use the same methods as Lab Exercise 04 and

Lab Exercise 06 to bring the Lab7.mat file to
Matlab.

Laboratory Procedure

1. Test and debug your program.

For debugging purposes, use the base set

of controller parameters in Table L.1.

2. While the motor is at steady-state speed,

gently apply a steady load torque to the

motor shaft. What are the responses of the

actual speed and control voltage? Explain.

3. Beginning with the base set of parameters,

explore the effect of varying the

proportional gain Kp on the transient

response. Try small (0.05) and large (0.2)

values of Kp. What are the effects on the

oscillation frequency and on the damping?

Explain in terms of the transfer function

parameters.

4. Beginning with the base set of parameters,

explore the effect of varying the integral



07 Closed-loop control L Lab Exercise: DC motor PI velocity control p. 1

Js + B

Controller

Kvi Kt

Current Source 
Amplifier

-

+

volts amps

Inside Computer Outside Computer

+

+

Disturbance 
Torque, TdMotor Torque 

Constant

Nm Nm

Nm

Vref
Kp(s + Ki/Kp)

s

Motor
Speed

Vactual
1

Figure L.3: continuous version of the full control loop.

gain Ki on the transient responses. Try

small (1) and large (10) values of Ki. What

are the effects on the oscillation frequency

and on the damping? Explain in terms of

the transfer function parameters.

5. Finally, using the base set of parameters,

record the control torque and actual

velocity responses for a step change in the

reference velocity that starts from −200

rpm and goes to +200 rpm.

In Matlab, compare these experimental

responses with the analytical responses for

the continuous system approximation.

The theoretical responses can be

calculated using the (appropriately scaled)

Matlab step command. The analysis
should be plotted over the experimental

responses. Use the subplot command to
place both the control value and the

measured velocity plots on the same page.

What do you conclude?

DC Motor Controller Model

The model in Figure L.3 is the continuous

approximation of the actually discrete control of

the DC motor.

For accuracy of the approximation, we need the

following:

1. the sampling frequency is much larger

than the natural frequency of the system



07 Closed-loop control Lab Exercise: DC motor PI velocity control p. 2

Table L.2:

Kvi Current Source Amplifier Gain 0.41 A/volt

Kt Motor Torque Constant 0.11 N-m/A

J Inertia in conventional units 3.8 ×10−4 N-m-s2/r

Kp Proportional Gain — V-s/r

Ki Integral Gain — V/r

and

2. time delays caused by computation are

insignificant and

3. the control value does not saturate and

4. the mechanical damping B is small in

comparison with the effects of the

proportional term Kp in the controller.

Parameter values are shown in Table L.2.

The following transfer functions can be obtained

from the block diagram:

Vact(s)

Vref(s)
=

τs+ 1
s2

ωn
2 + 2ζ

ωn
s+ 1

, (3)

Vact(s)

Td(s)
=

sKd

s2

ωn
2 + 2ζ

ωn
s+ 1

, and (4)

U(s)

Vref(s)
=

sKu(τs+ 1)
s2

ωn
2 + 2ζ

ωn
s+ 1

. (5)

Let K = KviKt N-m/V; then the following values

can be used to model the system:

numerator values: τ =
Kp

Ki
s,

Kd = 1
KiK

rad/N-m,

Ku = J
K V-s2/rad

natural frequency: ωn =
√

KiK
J rad/s

damping ratio: ζ =
Kp

2

√
K
JKi

.



07 Closed-loop control Lab Exercise: DC motor PI velocity control p. 1

Resource R15 A table editor for the myRIO

The following describes ctable2(), a utility
program that displays values that are stored in

memory, and allows the user to change selected

values. The values, with appropriate labels,

appear on the LCD display. The user enters

values on the keypad.

When ctable2() is called, it then runs
continually, returning to the calling program

only when← is entered. However, other

threads may use and cause to be displayed the

information stored by ctable2().
A table “title” is displayed on the first line of the

LCD display. The table can have as many as

nine numbered entries. Three of these entries

are always displayed below the title. The user

can scroll the entries up and down using the UP
and DWN keys. Alternately, the user can cause
any entry to become the top entry by entering

its number.

For example, a three-entry table, shown with the

third entry scrolled to the top, might look like:

Flow Control Table
3 BTI: ms 3.0
1 Qref: (cc/s) 450.
2 Qact: (cc/s) 453.
The user may alter an entry by scrolling it to the

top of the list, and pressing ENTR. The display

prompts for a new value of the parameter. For

the example above, pressing ENTR would cause

the prompt: Enter: BTI: ms to be displayed.
The user could then enter a new value (followed

by ENTR), causing the new value to be placed in

memory and displayed.

“Edit” values and “Show” values

There are two kinds of values, called “edit”

values and “show” values. Edit values are those

that the user may change at will. Each edit

value is presumed not to have changed since the

last time it was changed (edited) by the user.



07 Closed-loop control Lab Exercise: DC motor PI velocity control p. 2

Show values are those that the user may observe

more or less continually. A separate thread,

created within ctable2(), periodically updates
the table to reflect the current show values.

Show values may not be edited; each show

value is presumed perhaps to have changed

since the last time the table was updated. (The

changes would generally be made by another

thread, which would determine a new show

value and place it in memory; the new value

would then be displayed when the table is

updated.)

Typically, edit values are system parameters set

by the user, while show values are computed

and change with time.



07 Closed-loop control Lab Exercise: DC motor PI velocity control p. 3

Calling ctable2()

The prototype of ctable2() is:

int ctable2(char *title, struct table *entries, int nval);

The ctable2() function is automatically linked
with your code from the ME477Library. The

statement: #include "ctable2.h"must appear
in main.c.
When calling ctable2(), your program must

supply appropriate values for the following

arguments:

title is a string array for the table title.

Less than 20 characters.

entries is an array of structures of type table
defined as:

typedef struct {
char *e_label; // entry label label
int e_type; // entry type (0-show; 1-edit)
double value; // value

} table;

Each element of the array corresponds to

an entry in the table, and specifies the

entry label, type (edit or show), and value

of the entry. A good practice is to make the

length of the labels 12 characters or less.

nval specifies the number of table entries.

Again, the total number of edit and show

entries must be no greater than 9.

Entering←while the table is displayed causes

ctable2() to terminate, returning 0 for a
normal exit.

For example,

In this table entitled: Flow Control Table,
there are two edit values that can be changed by

the user (qref and bti), and one show value

(qact).
In the main thread, the variables for the table

title, and the table structure array are declared

and initialized.

char *Table_Title ="Flow Control Table";
table my_table[] = {



08 Closed-loop control Lab Exercise: DC motor PI velocity control p. 4

{"Qref: (cc/s)", 1, 0. },
{"Qact: (cc/s)", 0, 0.0 },
{"BTI: ms ", 1, 5.0 }

};

Notice that the each element of the array my_table is
a struct of type table containing the entry label,
type, and initial value.

Finally, the table editor is called:

ctable2(Table_Title, my_table, 3);

Within the thread that uses or changes the table

values, pointers corresponding to convenient

names of the table values can be declared. In the

example:

double *qref = &((threadResource->a_table+0)->value);
double *qact = &((threadResource->a_table+1)->value);
double *bti = &((threadResource->a_table+2)->value);

Then, variables may be referred to by their

named pointers. For example,

T = *bti/1000.;

Note the dereferencing of the bti pointer.



08

Path planning


