
08 Path planning L Lab Exercise: DC motor PID position control p. 1

08.L Lab Exercise: DC motor PID position control

Objectives

The objectives of this exercise are to:

1. implement a position control system for

an inertia dominated load,

2. explore appropriate path planning, and

3. integrate the use of a standard Matlab

design tool into the application

development system.

Introduction

In this exercise, a closed-loop position control

system for the DC motor will be developed. The

physical system is identical to that of Lab

Exercise 07: as shown in Figure L.1, the optical

encoder (through the FPGA), the D/A converter

(connected to the motor amplifier), and the

periodic timer interrupt will be combined to

control the DC motor.

A Matlab tool will be used to design an

appropriate proportional-integral-derivative

(PID) controller, shown in Figure L.2. Later, you

will evaluate the controller performance for a

time-varying position reference path xref(t).

This project builds on your past work. The

program is structurally similar to that of Lab

LCD Display

Keypad

Current
Amplifier

Encoder

Xilinx Zynq-7010

NI myRIO-1900

FPGA

Processors

AO

DIODIO

UART

/
8

DC
Motor/

2

Figure L.1: schematic of the test apparatus.



08 Path planning L Lab Exercise: DC motor PID position control p. 1

+

-

e(s) u(s)
H(s)

Output

Motor

error control

Figure L.2: block diagram of the system with a PID controller in the loop.

Exercise 07, and many of its components are

reused.

Path planning

A common task for a positioning system is to

start from a stationary position, move to a new

location, and then stop. Of course, one way to

do this is to apply an appropriate size step to

the reference input of the position control

system. However, depending on the system

bandwidth, a sufficiently large step may require

torques (current) and/or velocities (voltages)

that exceed the motor/driver capabilities. In

addition, the dynamic characteristics (e.g. rise

time and overshoot) may be inconsistent with

the application requirements. One remedy is to

use a form of truncated ramp instead of the step

reference input.

Suppose that we wish to reposition a

mass-dominated load by Xmax as rapidly as

possible, subject to limitations on the maximum

acceleration Amax and velocity Vmax, while

avoiding discontinuities in the position slope.

One such command is constructed as shown in

Figure L.3.

The motion has been divided into three sections:

acceleration, constant velocity, and deceleration.

Within this scheme, many variations are

possible: High Amax would result in a long

constant velocity section, with short

accelerations. Alternately, for high Vmax, the

displacement would approach an s-shaped

curve with no constant velocity section. Finally,



08 Path planning L Lab Exercise: DC motor PID position control p. 1

Figure L.3: a method of path planning for position control is to integrate
piecewise-constant acceleration (top), to obtain piecewise-linear velocity (middle),
also to be integrated to obtain piecewise-quadratic (and continuously differentiable)
position (bottom).

by allowing both high Amax and Vmax, the curve

would approach a step.

In this lab exercise, you will use a C function

Sramps that implements this time-varying
displacement as the control system reference

input. The function can link any number of

ramp segments in succession, including

specified dwell times at the end of each

segment. It can also repeat the sequence of

ramps indefinitely. See Lecture 08.L and

Resource 16 for details.

PID control design and evaluation

For the lab exercise, you will write two Matlab

scripts: one to design your PID controller and

another to compare its performance to an

analytical model. Specifically, the first script

will design a PIDF controller using the

MATLAB Control System toolbox function

pidtune. This compensator should be designed
to track the reference input, and to have control

bandwidth of 8 Hz. A PIDF controller improves

noise immunity of a PID controller by limiting

the high-frequency response of the derivative



08 Path planning L Lab Exercise: DC motor PID position control p. 1

term. Check your controller design by plotting

the closed-loop step response using the plant

parameters from Lab Exercise 07.

The script should convert the continuous-time

transfer function to discrete-time (c2d, tf, and
tfdata, with sample time T = 0.0005 s), and

then use tf2sos (transfer functions to second
order sections) to break the transfer function

into biquads. Finally, use the sos2header
function (see Resource 17) to write the biquad

filter to a C header file (PIDF.h) in your Lab
Exercise 08 project folder. That header can be

#included in your myRIO C program (after the

definition of the biquad struct.) In this way,
when you run your C program in Eclipse, it will

automatically incorporate the latest version of

your compensator design.

As in Lab Exercise 07, your second script will

load the actual response of position control

system (Lab8.mat), and compare it to both the
ideal reference displacement and the dynamic

model prediction. See below for details.

Program description

The program is similar in structure to that of

Lab Exercise 07, consisting of (1) a Main thread

that initializes the task and calls ctable2 to
communicate with the user, and (2) a Timer

thread that maintains timing using an interrupt,

implements the position control, and saves the

results. Your specific controller definition is

derived from the header file written from your

Matlab script.

Two threads

Main thread The main thread performs the

following tasks.

1. Initialize the table editor variables.

2. Initialize the path profile variables as

follows.



08 Path planning L Lab Exercise: DC motor PID position control p. 1

typedef struct {
double xfa; double v; double a; double d;

} seg;

3. Set up the timer IRQ interrupt (as in Lab

Exercise 06 and Lab Exercise 07).

4. As in Lab Exercise 07, register and create

the Timer thread to catch the timer

interrupt. The Timer thread will gain

access to both the table data and the path

profile through pointers in the Thread

resource. For example,

typedef struct {
NiFpga_IrqContext irqContext; // context
table *a_table; // table
seg *profile; // profile
int nseg; // no. of segs
NiFpga_Bool irqThreadRdy; // ready flag

} ThreadResource;

5. Call the table editor. The table should

contain three “show” values, labeled as

follows.

P_ref: revs
P_act: revs
VDAout: mV

6. When the table editor exits, signal the

Timer thread to terminate. Wait for it to

terminate.

Timer thread The Timer thread calls the

interrupt service routine (ISR). At the beginning

of the starting function, declare convenient

names for the table entries from the table

pointer, and for the ramp segment variables.

For example,

double *pref = &((threadResource->a_table+0)->value);
double *pact = &((threadResource->a_table+1)->value);
double *VDAmV = &((threadResource->a_table+2)->value);
seg *mySegs = threadResource->profile;
int nseg = threadResource->nseg;



08 Path planning L Lab Exercise: DC motor PID position control p. 1

The Timer thread includes a loop timed by the

IRQ, and terminated only by its ready flag.

Before the control loop begins:

• initialize the analog I/0, and set the motor

voltage to zero, using Aio_Write (as is Lab
Exercise 07) and

• set up the encoder counter interface (as in

Lab Exercise 04).

Each time through the loop, it should:

1. Get ready for the next interrupt by:

waiting for IRQ to assert, then writing the

Timer Write Register, and writing TRUE to
the Timer Set Time Register.

2. Call Sramps to compute the value of the
current reference position Pref . See below.

3. Call pos, to obtain the position of the
motor Pact. See below.

4. Compute the current error e = Pref − Pact.

5. Call cascade to compute the control value
from the current error using PIDF control

filter. Important: limit the computed

control value to the range [+7.5,−7.5] V.

6. Send the control value to the D/A

converter CO0 using Aio_Write.
7. Change the table to reflect the current

conditions of the controller.

8. Save the results of this BTI for later

analysis. See below.

Functions

cascade – The cascade function, called once,
from the ISR, during each BTI, implements the

general-purpose linear difference equation

algorithm from Lab Exercise 06. For this lab use

the same C code that you used in Lab

Exercise 06. In this case, the number of biquad

sections will be 1.



08 Path planning L Lab Exercise: DC motor PID position control p. 2

Note that, as in Lab Exercise 06, all calculations

should be made in (double) floating-point
arithmetic.

pos – Write a pos function to read the encoder
counter and return the displacement as a

(double) in units of BDI (encoder counts),
relative to the first position read.

Sramps – The C function Sramps, given in
Resource 16, returns the current input reference

position Pref . The function accepts an input

array of structures, each describing a separate

displacement ramp segment. Called once each

cycle of the control loop, Sramps steps through
the segments, then repeats the complete path

indefinitely.

We will initialize the path array in main, then
pass the array and the number of segments to

the Timer thread through the Thread Resource

(described above in the Main thread section).

First, define the new segment data type seg:

typedef struct {
double xfa; // position (revs)
double v; // velocity limit
double a; // acceleration limit
double d; // dwell time (s)

} seg;

Then, to test the position control system,

initialize an array mySegs of type seg as follows:

vmax = 50.; // rev/s
amax = 20.; // rev/s^2
dwell = 1.0; // s
seg mySegs[8] = { // rev

{10.125, vmax, amax, dwell},
{20.250, vmax, amax, dwell},
{30.375, vmax, amax, dwell},
{40.500, vmax, amax, dwell},
{30.625, vmax, amax, dwell},
{20.750, vmax, amax, dwell},
{10.875, vmax, amax, dwell},
{ 0.000, vmax, amax, dwell}

};
nseg = 8;



08 Path planning L Lab Exercise: DC motor PID position control p. 1

Notice that mySegs consists of four increasing
ramps of 10.125 revolutions each, followed by

four similar decreasing ramps that will return

the motor to the starting position. All of the

segments are subject to the same velocity and

acceleration limits, and all dwell for one second

before proceeding to the next segment.

You should declare the prototype of Sramps as:

int Sramps(
seg *segs, // segments array
int nseg, // number of segments
int *iseg, // current segment index
int *itime, // current time index
double T, // sample period
double *xa // next reference positon

);

At the end of the last segment, Sramps returns
the total number of time steps in all of the

segments. It returns 0 otherwise.
A typical call of Srampsmight be:

nsamp = Sramps(mySegs, &iseg, nseg, &itime, T, &Pref);

When Sramps is called for the first time, set
*itime = -1, and *iseg = -1, to initialize its
operation.

Saving the responses

The data can be conveniently saved by defining

data arrays in the ISR for each of the reference

position, the actual position, and the torque.

Then an auto-incremented index variable is

used to store the data in the arrays during each

BTI. Increment the index as needed, stopping

when it reaches the length of the arrays. A

convenient length would be 4000 points each.

After the main loop terminates, but while still in

the Timer thread, write the results, to the

Lab8.mat file. The results should include:

1. your name (string),



08 Path planning L Lab Exercise: DC motor PID position control p. 1

2. the reference position array (rad), cast to

double *,
3. the current position array (rad),

4. the torque array (N-m),

5. the PIDF array, cast to double *, and
6. the BTI length (s).

Use the same methods as Lab Exercises 04, 06

and 07 to bring the Lab8.mat file to Matlab.

Laboratory procedure

Test and debug your program.

Matlab analysis

In the second of your Matlab scripts:

1. Load the experimental results from the

Lab8.mat file.
2. Define a discrete version of the

motor/load plant transfer function from

Lab Exercise 07. Consider using c2d.
3. Form the discrete controller from the

values in the PIDF array in Lab8.mat.
4. Form the closed loop system models

relating the reference position Pref input to

the position Pact and torque T outputs:

G1(z) =
Pact(z)

Pref(z)
and G2(z) =

T(z)

Pref(z)
.

(1)

5. Using lsim, simulate the system to find

the theoretical responses for both the

position Pact(t) and the torque T(t) to the

reference position Pref(t) array that you

stored in Lab8.mat.
6. In a single Matlab figure plot the results in

three subplots versus time, as follows:

a) reference position, theoretical

position, and experimental position;

b) experimental error (reference −

experimental position) and



08 Path planning Lab Exercise: DC motor PID position control p. 2

theoretical error (reference −

theoretical position); and

c) theoretical and experimental torque.

What do you conclude?



08 Path planning Lab Exercise: DC motor PID position control p. 1

Resource R16 C function Sramps for position path planning

The following C function Sramps can be used to
construct position commands that smoothly

transition from one to another position over a

period of time. It is used in Lab Exercise 08 to

define position commands. A file containing

this function, called Sramps.c, can be found at
ricopic.one/embedded_computing/source/Sramps.c.

/*
* Sramps.c
*
* Created on: Mar 18, 2016
* Author: garbini
*/
#include "math.h"

typedef struct {
double xfa; double v; double a; double d;

} seg;

int Sramps(
seg *segs,
int nseg,
int *iseg,
int *itime,
double T,
double *xa

){
// Computes the next position, *xa,
// of a uniform sampled position profile.
// The profile is composed of an array
// of segments (type: seg)
// Each segment consists of:
// xfa: final position
// v: maximum velocity
// a: maximum acceleration
// d: dwell time at the final position
// Called from a loop, the profile proceeds from
// the current position,
// through each segment in turn, and then repeats.
// Inputs:
// seg *segs: - segments array
// int nseg: - number of segments in the profile
// int *iseg: - variable hold segment index
// int *itime - time index within a segment
// (= -1 at segment beginning)
// double T: - time increment
// Outputs:
// double *xa: - next position in profile
// Returns:
// n - number of samples in the profile,

http://ricopic.one/embedded_computing/source/Sramps.c


08 Path planning Lab Exercise: DC motor PID position control p. 2

// 0 otherwise
//
// Call with *itime = -1, *iseg = -1, outside the loop
// to initialize.

double t, t1=0, t2=1, tf=1, tramp;
double x1=1, xramp, xfr=1, xr, d;
static double x0, dir;
static int ntot;
double vmax=1, amax=1;
int n;

if (*itime==-1) {
(*iseg)++;
if(*iseg==nseg) {
*iseg=0;
ntot = 0;

}
*itime=0;
x0=*xa;

}
vmax=segs[*iseg].v;
amax=segs[*iseg].a;
d=segs[*iseg].d;
xfr=segs[*iseg].xfa-x0;
dir=1.0;
if(xfr<0){

dir=-1.;
xfr=-xfr;

}
t1 = vmax/amax;
x1 = 1./2.*amax*t1*t1;
if (x1<xfr/2) {

xramp = xfr-2.*x1;
tramp = xramp/vmax;
t2 = t1+tramp;
tf = t2+t1;

} else {
x1 = xfr/2;
t1 = sqrt(2*x1/amax);
t2 = t1;
tf = 2.*t1;

}
n = trunc((tf+d)/T)+1;

t = *itime*T;
if(t<t1) {

xr = 1./2.*amax*t*t;
} else if (t>=t1 && t<t2) {

xr = x1+vmax*(t-t1);
} else if (t>=t2 && t<tf) {

xr = xfr-1./2.*amax*(tf-t)*(tf-t);
} else {

xr = xfr;
}



08 Path planning Lab Exercise: DC motor PID position control p. 3

*xa=x0+dir*xr;
(*itime)++;
if(*itime==n+1) {

ntot = ntot + *itime - 1;
*itime=-1;
if(*iseg==nseg-1) {

return ntot;
}

}
return 0;
}



08 Path planning Lab Exercise: DC motor PID position control p. 1

Resource R17 Matlab function sos2header for converting

controllers to C

The following Matlab function sos2header can
be used to convert a Matlab controller in

second-order sections to a C floating point

header file. It is used in Lab Exercise 08 to

convert a controller designed in Matlab to a file

a myRIO can read and implement in C. A file

containing this function, called sos2header.m,
can be found at

ricopic.one/embedded_computing/source/sos2header.m.

function sos2header(fid, sos, name, T, comment)
% Print to the filter definition for
% FLOATING POINT header file.
%
% sos2header(fid, sos, name, T, comment)
%
%- fid - File indentity
%- sos - Scaled second order sections, from "tf2sos"
%- name - Name to be given to the array
% of biquad structures, and
% associated with the number of sections.
%- T - Sample period in seconds
%- comment - comment added at top of header

%---structure form of cascade
fprintf(fid,'//---%s\n', comment);
fprintf(fid,'//---%s\n', datestr(now,0));
[ns,m]=size(sos);
fprintf(...

fid,...
'int %s_ns = %d; // number of sections\n',...
name,...
ns...

);
fprintf(...

fid,...
['uint32_t timeoutValue = %d; ',...
'// time interval - us; f_s = %g Hz\n'],...
T*1e6,...
1/T...

);
fprintf(

fid,
['static\tstruct\tbiquad,'...
'%s[]={ // define the array of floating point ',...
'biquads\n'],...
name...

);

http://ricopic.one/embedded_computing/source/sos2header.m


Path planning Lab Exercise: DC motor PID position control p. 2

for i=1:ns-1
fprintf(fid,' {');
for j=[1,2,3,4,5,6]
fprintf(fid,'%e, ',sos(i,j));

end
fprintf(fid,'0, 0, 0, 0, 0},\n');

end
fprintf(fid,' {');
for j=[1,2,3,4,5,6]

fprintf(fid,'%e, ',sos(ns,j));
end
fprintf(fid,'0, 0, 0, 0, 0}\n };\n');



Embedded Computing Laboratory

The Embedded Computing Laboratory



B

Resources



Bibliography

Agarwal, A. and J. Lang (2005). Foundations of

Analog and Digital Electronic Circuits. The

Morgan Kaufmann Series in Computer

Architecture and Design. Elsevier Science.

isbn: 9780080506814.

Altera (2018). Is Tomorrow’s

Embedded-Systems Programming

Language Still C? web.

ARM (june 2012). Cortex-A9 Revision: r4p1

Technical Reference Manual. ARM DDI

0388I (ID073015). ARM.

— (may 2014). ARM Architecture Reference

Manual ARMv7-A and ARMv7-R edition.

ARM DDI 0406C.c (ID051414). ARM.

Baldursson, Stefán (2005). ?BLDC Motor

Modelling and Control – A

Matlab®/Simulink®Implementation?

mathesis. Chalmers University.

Barney, Blaise (july 2019). POSIX Threads

Programming. https:

//computing.llnl.gov/tutorials/pthreads/.

Baz1521 (2018). Microprocessor—Wikipedia,

The Free Encyclopedia. [Online; accessed

21-January-2018].

Booton, Richard C. and Simon Ramo (july 1984).

?The development of systems engineering?

inIEEE Transactions on Aerospace and

Electronic Systems: AES–20, pages 306–9.

Collins, Danielle (november 2018). When do

you need a linear amplifier versus a PWM

drive? web.

https://computing.llnl.gov/tutorials/pthreads/
https://computing.llnl.gov/tutorials/pthreads/


B Resources Bibliography p. 6

Franklin, G.F., J.D. Powell and M.L. Workman

(1998). Digital Control of Dynamic Systems.

Addison-Wesley world student series.

Addison-Wesley. isbn: 9780201331530.

Gomez, Martin (december 2000). ?Embedded

State Machine Implementation?

inEmbedded Systems Programming:

pages 40–50.

Horowitz, P and W Hill (2015). The Art of

Electronics. Cambridge University Press.

isbn: 9780521809269.

Instruments, National (august 2013). User

Guide and Specifications NI myRIO-1900.

376047A-01. National Instruments.

Kernighan, B.W. and D. Ritchie (1988). C

Programming Language. 2nd. Pearson

Education. isbn: 9780133086218.

Lamberson, Jim (2018). Arithmetic logic

unit—Wikipedia, The Free Encyclopedia.

[Online; accessed 24-January-2018].

Nise, N.S. (2015). Control Systems Engineering,

7th Edition. Wiley. isbn: 9781118800829.

Patterson, David A. and John L. Hennessy

(2013). Computer Organization and Design,

Fifth Edition: The Hardware/Software

Interface. 5th. San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc. isbn:

9780124077263.

— (2016). Computer Organization and Design:

The Hardware Software Interface ARM

Edition. 1st. San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc. isbn:

9780128017333.

Rowell, Derek and David N. Wormley (1997).

System Dynamics: An Introduction. Prentice

Hall.

Sameli, Ioan (2018).

Microcontroller—Wikipedia, The Free

Encyclopedia. [Online; accessed

21-January-2018].



Resources Bibliography p. 7

Xilinx (june 2017). Zynq-7000 All Programmable

SoC Data Sheet: Overview. DS190 (v1.11).

Xilinx.


