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itself Mathematics itself tru Truth p. 1

1. For much of this lecture I rely on the thorough overview of
Glanzberg. (Michael Glanzberg. ?Truth? inThe Stanford Encyclopedia
of Philosophy: byeditorEdward N. Zalta. Fall 2018. Metaphysics
Research Lab, Stanford University, 2018)

correspondence theory

facts

false

itself.tru Truth

1 Before we can discuss mathematical truth,

we should begin with a discussion of truth

itself.1 It is important to note that this is

obviously extremely incomplete. My aim is to

give a sense of the subject via brutal

(mis)abbreviation.

2 Of course, the study of truth cannot but be

entangled with the study of the world as such

(metaphysics) and of knowledge

(epistemology). Some of the following theories

presuppose or imply a certain metaphysical

and/or epistemological theory, but which these

are is controversial.

Neo-classical theories of truth

3 The neo-classical theories of truth take for

granted that there is truth and attempt to

explain what its precise nature is

(Michael Glanzberg. ?Truth? inThe Stanford

Encyclopedia of Philosophy:

byeditorEdward N. Zalta. Fall 2018.

Metaphysics Research Lab, Stanford University,

2018). What are provided here are modern

understandings of theories developed primarily

in the early 20th century.

The correspondence theory

4 A version of what is called the

correspondence theory of truth is the following.

A proposition is true iff there is an

existing entity in the world that

corresponds with it.

Such existing entities are called facts. Facts are

relational in that their parts (e.g. subject,

predicate, etc.) are related in a certain way.

5 Under this theory, then, if a proposition does

not correspond to a fact, it is false.
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coherence theory

2. This is typically put in terms of “beliefs” or “judgments,” but for
brevity and parallelism I have cast it in terms of propositions. It is to
this theory I have probably committed the most violence.

coherence

pragmatism

3. Pragmatism was an American philosophical movement of the early
20th century that valued the success of “practical” application of theories.
For an introduction, see Legg and Hookway. (Catherine Legg and
Christopher Hookway. ?Pragmatism? inThe Stanford Encyclopedia
of Philosophy: byeditorEdward N. Zalta. Spring 2019. Metaphysics
Research Lab, Stanford University, 2019. An introductory article on
the philsophical movement “pragmatism.” It includes an important
clarification of the pragmatic slogan, “truth is the end of inquiry.”)

6 This theory of truth is rather intuitive and

consistently popular (Marian David. ?The

Correspondence Theory of Truth? inThe

Stanford Encyclopedia of Philosophy:

byeditorEdward N. Zalta. Fall 2016.

Metaphysics Research Lab, Stanford University,

2016. A detailed overview of the

correspondence theory of truth.).

The coherence theory

7 The coherence theory of truth is adamant

that the truth of any given proposition is only as

good as its holistic system of propositions.2 This

includes (but typically goes beyond) a

requirement for consistency of a given

proposition with the whole and the

self-consistency of the whole, itself—sometimes

called coherence.

8 For parallelism, let’s attempt a succinct

formulation of this theory, cast in terms of

propositions.

A proposition is true iff it is has

coherence with a system of

propositions.

9 Note that this has no reference to facts,

whatsoever. However, it need not necessarily

preclude them.

The pragmatic theory

10 Of the neo-classical theories of truth, this is

probably the least agreed upon as having a

single clear statement (Glanzberg, ?Truth?).

However, as with pragmatism in general,3 the

pragmatic truth is oriented practically.

11 Perhaps the most important aspect of this

theory is that it is thoroughly a correspondence

theory, agreeing that true propositions are those

that correspond to the world. However, there is

a different focus here that differentiates it from
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4. This is especially congruent with the work of William James (Legg
and Hookway, ?Pragmatism?).

5. This is especially congruent with the work of Charles Sanders Peirce
(ibidem).

inquiry

facts

correspondence theory, proper: it values as

more true that which has some sort of practical

use in human life.

12 We’ll try to summarize pragmatism in two

slogans with slightly different emphases; here’s

the first, again cast in propositional parallel.

A proposition is true iff it works.4

Now, there are two ways this can be

understood: (a) the proposition “works” in that

it empirically corresponds to the world or (b)

the proposition “works” in that it has an effect

that some agent intends. The former is pretty

standard correspondence theory. The latter is

new and fairly obviously has ethical

implications, especially today.

13 Let us turn to a second formulation.

A proposition is true if it

corresponds with a process of

inquiry.5

This has two interesting facets: (a) an agent’s

active inquiry creates truth and (b) it is a sort of

correspondence theory that requires a

correspondence of a proposition with a process

of inquiry, not, as in the correspondence theory,

with a fact about the world. The latter has

shades of both correspondence theory and

coherence theory.

The picture theory

Before we delve into this theory, we must take a

moment to clarify some terminology.

States of affairs and facts

14 When discussing the correspondence

theory, we have used the term fact to mean an

actual state of things in the world. A problem

arises in the correspondence theory, here. It

says that a proposition is true iff there is a fact
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6. But Barker and Jago (Stephen Barker and Mark Jago. ?Being Positive
About Negative Facts? inPhilosophy and Phenomenological Research:
85.1 [2012], pages 117–138. DOI: 10.1111/j.1933-1592.2010.
00479.x) have attempted just that.

state of affairs

obtain

model

picture

7. See Wittgenstein, (Ludwig Wittgenstein. Tractatus Logico-
Philosophicus. byeditorC.}, familyi=C., given=K. Ogden, giveni=. O.
Project Gutenberg. International Library of Psychology Philosophy and
Scientific Method. Kegan Paul, Trench, Trubner & Co., Ltd., 1922. A
brilliant work on what is possible to express in language—and what is
not. As Wittgenstein puts it, “What can be said at all can be said clearly;
and whereof one cannot speak thereof one must be silent.”) Biletzki
and Matar, (Anat Biletzki and Anat Matar. ?Ludwig Wittgenstein?
inThe Stanford Encyclopedia of Philosophy: byeditorEdward N. Zalta.
Summer 2018. Metaphysics Research Lab, Stanford University, 2018.
An introduction to Wittgenstein and his thought.) glock2016 (), and
Dolby. (David Dolby. ?Wittgenstein on Truth? inA Companion to
Wittgenstein: John Wiley & Sons, Ltd, 2016. chapter 27, pages 433–442.
ISBN: 9781118884607. DOI: 10.1002/9781118884607.ch27)

Figure tru.1: a representation of the picture theory.

that corresponds with it. What of a negative

proposition like “there are no cows in

Antarctica”? We would seem to need a

corresponding “negative fact” in the world to

make this true. If a fact is taken to be composed

of a complex of actual objects and relations, it is

hard to imagine such facts.6

15 Furthermore, if a proposition is true, it

seems that it is the corresponding fact that

makes it so; what, then, makes a proposition

false, since there is no fact to support the falsity?

(Mark Textor. ?States of Affairs? inThe Stanford

Encyclopedia of Philosophy:

byeditorEdward N. Zalta. Winter 2016.

Metaphysics Research Lab, Stanford University,

2016)

16 And what of nonsense? There are some

propositions like “there is a round cube” that are

neither true nor false. However, the preceding

correspondence theory cannot differentiate

between false and nonsensical propositions.

17 A state of affairs is something possible that

may or may not be actual (ibidem). If a state of

affairs is actual, it is said to obtain. The picture

theory will make central this concept instead of

that of the fact.

The picture theory of meaning (and truth)

18 The picture theory of meaning uses the

analogy of the model or picture to explain the

meaningfulness of propositions.7

A proposition names possible objects

and arranges these names to

correspond to a state of affairs.

See Fig. tru.1. This also allows for an easy

account of truth, falsity, and nonsense.

nonsense A sentence that appears to be a

proposition is actually not if the

arrangement of named objects is

https://doi.org/10.1111/j.1933-1592.2010.00479.x
https://doi.org/10.1111/j.1933-1592.2010.00479.x
https://doi.org/10.1002/9781118884607.ch27
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nonsense

8. See, also, (� Slavoj Žižek. Less Than Nothing: Hegel and the Shadow of
Dialectical Materialism. Verso, 2012. ISBN: 9781844678976. This is one
of the most interesting presentations of Hegel and Lacan by one of the
most exciting contemporary philosophers. pp. 25-6), from whom I stole
the section title.

language itself

9. This was one of the contributions to the “linguistic turn” (Wikipedia.
Linguistic turn—Wikipedia, The Free Encyclopedia. http : / / en .
wikipedia . org / w / index . php ? title = Linguistic %
20turn&oldid=922305269. [Online; accessed 23-October-2019].
2019. Hey, we all do it.) of philosophy in the early 20th century.

impossible. Such a sentence is simply

nonsense.

truth A proposition is true if the state of affairs

it depicts obtains.

falsity A proposition is false if the state of

affairs it depicts does not obtain.

19 Now, some (Hans Johann Glock. ?Truth in

the Tractatus? inSynthese: 148.2 [january 2006],

pages 345–368. ISSN: 1573-0964. DOI:

10.1007/s11229-004-6226-2) argue this is a

correspondence theory and others

(David Dolby. ?Wittgenstein on Truth? inA

Companion to Wittgenstein: John Wiley & Sons,

Ltd, 2016. chapter 27, pages 433–442. ISBN:

9781118884607. DOI:

10.1002/9781118884607.ch27) that it is not. In

any case, it certainly solves some issues that

have plagued the correspondence theory.

“What cannot be said must be shown”

20 Something the picture theory does is

declare a limit on what can meaningfully be

said. A proposition (as defined above) must be

potentially true or false. Therefore, something

that cannot be false (something necessarily true)

cannot be a proposition (ibidem). And there are

certain things that are necessarily true for

language itself to be

meaningful—paradigmatically, the logical

structure of the world. What a proposition does,

then, is show, via its own logical structure, the

necessary (for there to be meaningful

propositions at all) logical structure of the

world.8

21 An interesting feature of this perspective is

that it opens up language itself to analysis and

limitation.9 And, furthermore, it suggests that

the set of what is, is smaller than the set of what

can be meaningfully spoken about.

http://en.wikipedia.org/w/index.php?title=Linguistic%20turn&oldid=922305269
http://en.wikipedia.org/w/index.php?title=Linguistic%20turn&oldid=922305269
http://en.wikipedia.org/w/index.php?title=Linguistic%20turn&oldid=922305269
https://doi.org/10.1007/s11229-004-6226-2
https://doi.org/10.1002/9781118884607.ch27
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perspective

skepticism

The relativity of truth

22 Each subject (i.e. agent) in the world, with

their propositions, has a perspective: a given

moment, a given place, an

historical-cultural-linguistic situation. At the

very least, the truth of propositions must

account for this. Just how a theory of truth

should do so is a matter of significant

debate (Maria Baghramian and J. Adam Carter.

?Relativism? inThe Stanford Encyclopedia of

Philosophy: byeditorEdward N. Zalta. Winter

2019. Metaphysics Research Lab, Stanford

University, 2019).

23 Some go so far as to be skeptical about

truth (Peter Klein. ?Skepticism? inThe Stanford

Encyclopedia of Philosophy:

byeditorEdward N. Zalta. Summer 2015.

Metaphysics Research Lab, Stanford University,

2015), regarding it to be entirely impossible.

Others say that while a proposition may or may

not be true, we could never come to know this.

24 Often underlying this conversation is the

question of there being a common world in

which we all participate, and, if so, whether or

not we can properly represent this world in

language such that multiple subjects could come

to justifiably agree or disagree on the truth of a

proposition. If every proposition is so relative

that it is relevant to only the proposer, truth

would seem of little value. On the other hand, if

truth is understood to be

“objective”—independent of subjective

perspective—a number of objections can be

made (Baghramian and Carter, ?Relativism?),

such as that there is no non-subjective

perspective from which to judge truth.

Other ideas about truth

25 There are too many credible ideas about

truth to attempt a reasonable summary;
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10. Especially notable here is the work of Alfred Tarski in the mid-20th
century.

beliefs

sentences

interpreted sentences

quasi-quotation

Convention T

11. Wilfrid Hodges. ?Tarski’s Truth Definitions? inThe Stanford
Encyclopedia of Philosophy: byeditorEdward N. Zalta. Fall 2018.
Metaphysics Research Lab, Stanford University, 2018; Mario Gómez-
Torrente. ?Alfred Tarski? inThe Stanford Encyclopedia of Philosophy:
byeditorEdward N. Zalta. Spring 2019. Metaphysics Research Lab,
Stanford University, 2019; Peter Hylton and Gary Kemp. ?Willard
Van Orman Quine? inThe Stanford Encyclopedia of Philosophy:
byeditorEdward N. Zalta. Spring 2019. Metaphysics Research Lab,
Stanford University, 2019.

however, I will attempt to highlight a few

important ones.

Formal methods

26 A set of tools was developed for exploring

theories of truth, especially correspondence

theories.10 Focus turned from beliefs to

sentences, which are akin to propositions.

(Recall that the above theories have already

been recast in the more modern language of

propositions.) Another aspect of these sentences

under consideration is that they begin to be

taken as interpreted sentences: they are already

have meaning.

27 Beyond this, several technical apparatus are

introduced that formalize criteria for truth. For

instance, a sentence is given a sign φ. A need

arises to distinguish between the quotation of

sentence φ and the unqoted sentence φ, which is

then given the quasi-quotation notation pφq.

For instance, let φ stand for snow is white; then

φ→ snow is white and pφq→ ‘snow is white’.

Tarski introduces Convention T, which states

that for a fixed language Lwith fully interpreted

sentences, (Glanzberg, ?Truth?)

An adequate theory of truth for L

must imply for each sentence φ of L

pφq is true if and only if φ.

Using the same example, then,

‘snow is white’ if and only if snow is

white.

Convention T states a general rule for the

adequacy of a theory of truth and is used in

several contemporary theories.

28 We can see that these formal methods get

quite technical and fun! For more, see Hodges,

Gómez-Torrente and Hylton and Kemp.11
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redundancy theory

12. Daniel Stoljar and Nic Damnjanovic. ?The Deflationary Theory of
Truth? inThe Stanford Encyclopedia of Philosophy: byeditorEdward N.
Zalta. Fall 2014. Metaphysics Research Lab, Stanford University, 2014.

truth-bearer

meaning

theory of use

language-games

Deflationary theories

29 Deflationary theories of truth try to

minimize or eliminate altogether the concept of

or use of the term ‘truth’. For instance, the

redundancy theory claim that (Glanzberg,

?Truth?):

To assert that pφq is true is just to

assert that φ.

Therefore, we can eliminate the use of ‘is true’.

30 For more of less, see Stoljar and

Damnjanovic.12

Language

31 It is important to recognize that language

mediates truth; that is, truth is embedded in

language. The way language in general affects

theories of truth has been studied extensively.

For instance, whether the truth-bearer is a belief

or a proposition or a sentence—or something

else—has been much discussed. The importance

of the meaning of truth-bearers like sentences

has played another large role. Theories of

meaning, like the picture theory presented

above, are often closely intertwined with

theories of truth.

32 One of the most popular theories of

meaning is called the theory of use:

For a large class of cases of the

employment of the word “meaning”

– though not for all – this word can

be explained in this way: the

meaning of a word is its use in the

language. (L. Wittgenstein,

P.M.S. Hacker and J. Schulte.

Philosophical Investigations. Wiley,

2010. ISBN: 9781444307979)

This theory is accompanied by the concept of

language-games, which are loosely defined as
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metaphysical realism

scientific realism

13. Drew Khlentzos. ?Challenges to Metaphysical Realism? inThe
Stanford Encyclopedia of Philosophy: byeditorEdward N. Zalta. Winter
2016. Metaphysics Research Lab, Stanford University, 2016.

anti-realism

Metaphysical idealism

Epistemological idealism

14. These definitions are explicated by Guyer and Horstmann.
(Paul Guyer and Rolf-Peter Horstmann. ?Idealism? inThe Stanford
Encyclopedia of Philosophy: byeditorEdward N. Zalta. Winter 2018.
Metaphysics Research Lab, Stanford University, 2018)

rule-based contexts within which sentences

have uses. The idea is that the meaning of a

given sentence is its use in a network of

meaning that is constantly evolving. This view

tends to be understood as deflationary or

relativistic about truth.

Metaphysical and epistemological

considerations

33 We began with the recognition that truth is

intertwined with metaphysics and

epistemology. Let’s consider a few such topics.

34 The first is metaphysical realism, which

claims that there is a world existing objectively:

independently of how we think about or

describe it. This “realism” tends to be closely

tied to, yet distinct from, scientific realism,

which goes further, claiming the world is

“actually” as science describes, independently

of the scientific descriptions (e.g. there are

actual objects corresponding to the phenomena

we call atoms, molecules, light particles, etc.).

35 There have been many challenges to the

realist claim (for some recent versions, see

Khlentzos13) put forth by what is broadly called

anti-realism. These vary, but often challenge the

ability of realists to properly link language to

supposed objects in the world.

36 Metaphysical idealism has been

characterized as claiming that “mind” or

“subjectivity” generate or completely compose

the world, which has no being outside mind.

Epistemological idealism, on the other hand,

while perhaps conceding that there is a world

independent of mind, claims all knowledge of

the world is created through mind and for mind

and therefore can never escape a sort of

mind-world gap.14 This epistemological

idealism has been highly influential since the

work of Immanuel Kant (I. Kant, P. Guyer and
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noumenal world

phenomenal world

Notion

A.W. Wood. Critique of Pure Reason. The

Cambridge Edition of the Works of Immanuel

Kant. Cambridge University Press, 1999. ISBN:

9781107268333) in the late 18th century, which

ushered in the idea of the noumenal world

in-itself and the phenomenal world, which is

how the noumenal world presents to us. Many

have held that phenomena can be known

through inquiry, whereas noumena are

inaccessible. Furthermore, what can be known

is restricted by the categories pre-existent in the

knower.

37 Another approach, taken by Georg Wilhelm

Friedrich Hegel (Paul Redding. ?Georg Wilhelm

Friedrich Hegel? inThe Stanford Encyclopedia

of Philosophy: byeditorEdward N. Zalta.

Summer 2018. Metaphysics Research Lab,

Stanford University, 2018) and other German

idealists following Kant, is to reframe reality as

thoroughly integrating subjectivity

(G.W.F. Hegel and A.V. Miller. Phenomenology

of Spirit. Motilal Banarsidass, 1998. ISBN:

9788120814738; Slavoj Žižek. Less Than Nothing:

Hegel and the Shadow of Dialectical

Materialism. Verso, 2012. ISBN: 9781844678976.

This is one of the most interesting presentations

of Hegel and Lacan by one of the most exciting

contemporary philosophers.); that is,

“everything turns on grasping and expressing

the True, not only as Substance, but equally as

Subject.” A subject’s proposition is true

inasmuch as it corresponds with its Notion

(approximately: the idea or meaning for the

subject). Some hold that this idealism is

compatible with a sort of metaphysical realism,

at least as far as understanding is not

independent of but rather beholden to reality

(Žižek, Less Than Nothing: Hegel and the

Shadow of Dialectical Materialism, p. 906 ff.).

38 Clearly, all these ideas have many

implications for theories of truth and vice versa.
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Where this leaves us

39 The truth is hard. What may at first appear

to be a simple concept becomes complex upon

analysis. It is important to recognize that we

have only sampled some highlights of the

theories of truth. I recommend further study of

this fascinating topic.

40 Despite the difficulties of finding definitive

grounds for understanding truth, we are faced

with the task of provisionally forging ahead.

Much of what follows in the study of

mathematics makes certain implicit and explicit

assumptions about truth. However, we have

found that the foundations of these assumptions

may themselves be problematic. It is my

contention that, despite the lack of clear

foundations, it is still worth studying

engineering analysis, its mathematical

foundations, and the foundations of truth itself.

My justification for this claim is that I find the

utility and the beauty of this study highly

rewarding.
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axioms

deduction

proof

theorems

15. Throughout this section, for the history of mathematics I rely heavily
onKline. (M. Kline. Mathematics: The Loss of Certainty. AGalaxy book.
OxfordUniversity Press, 1982. ISBN: 9780195030853. A detailed account
of the “illogical” development of mathematics and an exposition of its
therefore remarkable utility in describing the world.)

Euclid

geometry

Gauss

Aristotle

itself.found The foundations of mathematics

1 Mathematics has long been considered

exemplary for establishing truth. Primarily, it

uses a method that begins with

axioms—unproven propositions that include

undefined terms—and uses logical deduction to

prove other propositions (theorems): to show

that they are necessarily true if the axioms are.

2 It may seem obvious that truth established in

this way would always be relative to the truth of

the axioms, but throughout history this footnote

was often obscured by the “obvious” or

“intuitive” universal truth of the axioms.15 For

instance, Euclid (Wikipedia. Euclid —

Wikipedia, The Free Encyclopedia.

http://en.wikipedia.org/w/index.php?title=

Euclid&oldid=923031048. [Online; accessed

26-October-2019]. 2019) founded geometry—the

study of mathematical objects traditionally

considered to represent physical space, like

points, lines, etc.—on axioms thought so solid

that it was not until the early 19th century that

Carl Friedrich Gauss (Wikipedia. Carl Friedrich

Gauss —Wikipedia, The Free Encyclopedia.

http://en.wikipedia.org/w/index.php?title=

Carl%20Friedrich%20Gauss&oldid=922692291.

[Online; accessed 26-October-2019]. 2019) and

others recognized this was only one among

many possible geometries (M. Kline.

Mathematics: The Loss of Certainty. A Galaxy

book. Oxford University Press, 1982. ISBN:

9780195030853. A detailed account of the

“illogical” development of mathematics and an

exposition of its therefore remarkable utility in

describing the world.) resting on different

axioms. Furthermore, Aristotle

(Christopher Shields. ?Aristotle? inThe Stanford

Encyclopedia of Philosophy:

byeditorEdward N. Zalta. Winter 2016.

Metaphysics Research Lab, Stanford University,

http://en.wikipedia.org/w/index.php?title=Euclid&oldid=923031048
http://en.wikipedia.org/w/index.php?title=Euclid&oldid=923031048
http://en.wikipedia.org/w/index.php?title=Carl%20Friedrich%20Gauss&oldid=922692291
http://en.wikipedia.org/w/index.php?title=Carl%20Friedrich%20Gauss&oldid=922692291
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algebra

rational numbers

natural numbers

integers

irrational numbers

negative numbers

imaginary numbers

2016) had acknowledged that reasoning must

begin with undefined terms; however, even

Euclid (presumably aware of Aristotle’s work)

seemed to forget this and provided definitions,

obscuring the foundations of his work and

starting mathematics on a path that for over

2,000 years would forget its own relativity

(Kline, Mathematics: The Loss of Certainty,

p. 101-2).

3 The foundations of Euclid were even shakier

than its murky starting point: several unstated

axioms were used in proofs and some proofs

were otherwise erroneous. However, for two

millennia, mathematics was seen as the field

wherein truth could be established beyond

doubt.

Algebra ex nihilo

4 Although not much work new geometry

appeared during this period, the field of algebra

(Wikipedia. Algebra —Wikipedia, The Free

Encyclopedia. http://en.wikipedia.org/w/

index.php?title=Algebra&oldid=920573802.

[Online; accessed 26-October-2019]. 2019)—the

study of manipulations of symbols standing for

numbers in general—began with no axiomatic

foundation whatsoever. The Greeks had a

notion of rational numbers, ratios of natural

numbers (positive integers), and it was known

that many solutions to algebraic equations were

irrational (could not be expressed as a ratio of

integers). But these irrational numbers, like

virtually everything else in algebra, were

gradually accepted because they were so useful

in solving practical problems (they could be

approximated by rational numbers and this

seemed good enough). The rules of basic

arithmetic were accepted as applying to these

and other forms of new numbers that arose in

algebraic solutions: negative, imaginary, and

http://en.wikipedia.org/w/index.php?title=Algebra&oldid=920573802
http://en.wikipedia.org/w/index.php?title=Algebra&oldid=920573802
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complex numbers

optics

astronomy

calculus

Newtonian mechanics

non-Euclidean geometry

quaternions

complex numbers.

The application of mathematics to science

5 During this time, mathematics was being

applied to optics and astronomy. Sir Isaac

Newton then built calculus upon algebra,

applying it to what is now known as Newtonian

mechanics, which was really more the product

of Leonhard Euler (George Smith. ?Isaac

Newton? inThe Stanford Encyclopedia of

Philosophy: byeditorEdward N. Zalta. Fall

2008. Metaphysics Research Lab, Stanford

University, 2008; Wikipedia. Leonhard Euler —

Wikipedia, The Free Encyclopedia.

http://en.wikipedia.org/w/index.php?title=

Leonhard%20Euler&oldid=921824700. [Online;

accessed 26-October-2019]. 2019). Calculus

introduced its own dubious operations, but the

success of mechanics in describing and

predicting physical phenomena was

astounding. Mathematics was hailed as the

language of God (later, Nature).

The rigorization of mathematics

6 It was not until Gauss created non-Euclidean

geometry, in which Euclid’s were shown to be

one of many possible axioms compatible with

the world, and William Rowan Hamilton

(Wikipedia. William Rowan Hamilton —

Wikipedia, The Free Encyclopedia.

http://en.wikipedia.org/w/index.php?title=

William%20Rowan%20Hamilton&oldid=923163451.

[Online; accessed 26-October-2019]. 2019)

created quaternions (Wikipedia. Quaternion —

Wikipedia, The Free Encyclopedia.

http://en.wikipedia.org/w/index.php?title=

Quaternion&oldid=920710557. [Online; accessed

26-October-2019]. 2019), a number system in

which multiplication is noncommunicative, that

it became apparent something was

http://en.wikipedia.org/w/index.php?title=Leonhard%20Euler&oldid=921824700
http://en.wikipedia.org/w/index.php?title=Leonhard%20Euler&oldid=921824700
http://en.wikipedia.org/w/index.php?title=William%20Rowan%20Hamilton&oldid=923163451
http://en.wikipedia.org/w/index.php?title=William%20Rowan%20Hamilton&oldid=923163451
http://en.wikipedia.org/w/index.php?title=Quaternion&oldid=920710557
http://en.wikipedia.org/w/index.php?title=Quaternion&oldid=920710557
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rigorization

symbolic logic

mathematical model

16. The branch of mathematics called model theory concerns itself
with general types of models that can be made from a given formal
system, like an axiomatic mathematical system. For more on model
theory, see Hodges. (Wilfrid Hodges. ?Model Theory? inThe Stanford
Encyclopedia of Philosophy: byeditorEdward N. Zalta. Fall 2018.
Metaphysics Research Lab, Stanford University, 2018) It is noteworthy
that the engineering/science use of the term “mathematical model” is
only loosely a “model” in the sense of model theory.

implicit definition

fundamentally wrong with the way truth in

mathematics had been understood. This started

a period of rigorization in mathematics that set

about axiomatizing and proving 19th century

mathematics. This included the development of

symbolic logic, which aided in the process of

deductive reasoning.

7 An aspect of this rigorization is that

mathematicians came to terms with the axioms

that include undefined terms. For instance, a

“point” might be such an undefined term in an

axiom. A mathematical model is what we create

when we attach these undefined terms to

objects, which can be anything consistent with

the axioms.16 The system that results from

proving theorems would then apply to anything

“properly” described by the axioms. So two

masses might be assigned “points” in a

Euclidean geometric space, from which we

could be confident that, for instance, the

“distance” between these masses is the

Euclidean norm of the line drawn between the

points. It could be said, then, that a “point” in

Euclidean geometry is implicitly defined by its

axioms and theorems, and nothing else. That is,

mathematical objects are not inherently tied to

the physical objects to which we tend to apply

them. Euclidean geometry is not the study of

physical space, as it was long considered—it is

the study of the objects implicitly defined by its

axioms and theorems.

The foundations of mathematics are built

8 The building of the modern foundations

mathematics began with clear axioms, solid

reasoning (with symbolic logic), and lofty yet

seemingly attainable goals: prove theorems to

support the already ubiquitous mathematical

techniques in geometry, algebra, and calculus

from axioms; furthermore, prove that these
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consistent

theorem

Set theory

foundation

sets

ZFC set theory

axioms (and things they imply) do not

contradict each other, i.e. are consistent, and

that the axioms are not results of each other (one

that can be derived from others is a theorem, not

an axiom).

9 Set theory is a type of formal axiomatic

system that all modern mathematics is

expressed with, so set theory is often called the

foundation of mathematics (Joan Bagaria. ?Set

Theory? inThe Stanford Encyclopedia of

Philosophy: byeditorEdward N. Zalta. Fall

2019. Metaphysics Research Lab, Stanford

University, 2019). We will study the basics in ??.

The primary objects in set theory are sets:

informally, collections of mathematical objects.

There is not just one a single set of axioms that is

used as the foundation of all mathematics for

reasons will review in a moment. However, the

most popular set theory is Zermelo-Fraenkel set

theory with the axiom of choice (ZFC). The

axioms of ZF sans C are as follows. (ibidem)

extensionality If two sets A and B have the

same elements, then they are equal.

empty set There exists a set, denoted by ∅ and

called the empty set, which has no

elements.

pair Given any sets A and B, there exists a set,

denoted by {A,B}, which contains A and B

as its only elements. In particular, there

exists the set {A}which has A as its only

element.

power set For every set A there exists a set,

denoted by P(A) and called the power set

of A, whose elements are all the subsets of

A.

union For every set A, there exists a set,

denoted by
⋃
A and called the union of A,

whose elements are all the elements of the

elements of A.

infinity There exists an infinite set. In
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first incompleteness theorem

incomplete

17. Panu Raatikainen. ?Gödel’s Incompleteness Theorems? inThe
Stanford Encyclopedia of Philosophy: byeditorEdward N. Zalta. Fall
2018. Metaphysics Research Lab, Stanford University, 2018. A through
and contemporary description of Gödel’s incompleteness theorems,
which have significant implications for the foundations and function of
mathematics and mathematical truth.

undecidable

particular, there exists a set Z that contains

∅ and such that if A ∈ Z, then⋃
{A, {A}} ∈ Z.

separation For every set A and every given

property, there is a set containing exactly

the elements of A that have that property.

A property is given by a formula ϕ of the

first-order language of set theory. Thus,

separation is not a single axiom but an

axiom schema, that is, an infinite list of

axioms, one for each formula ϕ.

replacement For every given definable

function with domain a set A, there is a set

whose elements are all the values of the

function.

10 ZFC also has the axiom of choice. (Bagaria,

?Set Theory?)

choice For every set A of pairwise-disjoint

non-empty sets, there exists a set that

contains exactly one element from each set

in A.

The foundations have cracks

11 The foundationalists’ goal was to prove

that some set of axioms from which all of

mathematics can be derived is both consistent

(contains no contradictions) and complete

(every true statement is provable). The work of

Kurt Gödel (Juliette Kennedy. ?Kurt Gödel?

inThe Stanford Encyclopedia of Philosophy:

byeditorEdward N. Zalta. Winter 2018.

Metaphysics Research Lab, Stanford University,

2018) in the mid 20th century shattered this

dream by proving in his first incompleteness

theorem that any consistent formal system

within which one can do some amount of basic

arithmetic is incomplete! His argument is worth

reviewing (see Raatikainen17), but at its heart is

an undecidable statement like “This sentence is
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second incompleteness theorem

material implication

Banach-Tarski paradox

unprovable.” Let U stand for this statement. If it

is true it is unprovable. If it is provable it is

false. Therefore, it is true iff it is provable. Then

he shows that if a statement A that essentially

says “arithmetic is consistent” is provable, then

so is the undecidable statement U. But if U is to

be consistent, it cannot be provable, and,

therefore neither can A be provable!

12 This is problematic. It tells us virtually any

conceivable axiomatic foundation of

mathematics is incomplete. If one is complete, it

is inconsistent (and therefore worthless). One

problem this introduces is that a true theorem

may be impossible to prove; but, it turns out, we

can never know that in advance of its proof if it

is provable.

13 But it gets worse: Gödel’s second

incompleteness theorem shows that such

systems cannot even be shown to be consistent!

This means, at any moment, someone could find

an inconsistency in mathematics, and not only

would we lose some of the theorems: we would

lose them all. This is because, by what is called

the material implication (Kline, Mathematics:

The Loss of Certainty, pp. 187-8, 264), if one

contradiction can be found, every proposition

can be proven from it. And if this is the case, all

(even proven) theorems in the system would be

suspect.

14 Even though no contradiction has yet

appeared in ZFC, its axiom of choice, which is

required for the proof of most of what has thus

far been proven, generates the Banach-Tarski

paradox that says a sphere of diameter x can be

partitioned into a finite number of pieces and

recombined to form two spheres of diameter x.

Troubling, to say the least! Attempts were made

for a while to eliminate the use of the axiom of

choice, but our buddy Gödel later proved that if

ZF is consistent, so is ZFC (ibidem, p. 267).
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empirical

18. Kline, Mathematics: The Loss of Certainty.

Mathematics is considered empirical

15 Since its inception, mathematics has been

applied extensively to the modeling of the

world. Despite its cracked foundations, it has

striking utility. Many recent leading minds of

mathematics, philosophy, and science suggest

we treat mathematics as empirical, like any

science, subject to its success in describing and

predicting events in the world. As Kline18

summarizes,

The upshot […] is that sound

mathematics must be determined

not by any one foundation which

may some day prove to be right. The

“correctness” of mathematics must

be judged by its application to the

physical world. Mathematics is an

empirical science much as

Newtonian mechanics. It is correct

only to the extent that it works and

when it does not, it must be

modified. It is not a priori

knowledge even though it was so

regarded for two thousand years. It

is not absolute or unchangeable.
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formal languages

logic

reasoning

propositions

theorems

proof

propositional calculus

logical connectives

first-order logic

quantifiers

set theory

sets

Mathematical reasoning, logic, and set theory

In order to communicate mathematical ideas

effectively, formal languages have been

developed within which logic, i.e. deductive

(mathematical) reasoning, can proceed.

Propositions are statements that can be either

true > or false ⊥. Axiomatic systems begin with
statements (axioms) assumed true. Theorems

are proven by deduction. In many forms of

logic, like propositional calculus (Wikipedia.

Propositional calculus —Wikipedia, The Free

Encyclopedia.

http://en.wikipedia.org/w/index.php?title=

Propositional%20calculus&oldid=914757384.

[Online; accessed 29-October-2019]. 2019),

compound propositions are constructed via

logical connectives like “and” and “or” of

atomic propositions (see Lec. sets.logic). In

others, like first-order logic (Wikipedia.

First-order logic —Wikipedia, The Free

Encyclopedia. http:

//en.wikipedia.org/w/index.php?title=First-

order%20logic&oldid=921437906. [Online;

accessed 29-October-2019]. 2019), there are also

logical quantifiers like “for every” and “there

exists.”

The mathematical objects and operations about

which most propositions are made are

expressed in terms of set theory, which was

introduced in Lec. itself.found and will be

expanded upon in Lec. sets.setintro. We can say

that mathematical reasoning is comprised of

http://en.wikipedia.org/w/index.php?title=Propositional%20calculus&oldid=914757384
http://en.wikipedia.org/w/index.php?title=Propositional%20calculus&oldid=914757384
http://en.wikipedia.org/w/index.php?title=First-order%20logic&oldid=921437906
http://en.wikipedia.org/w/index.php?title=First-order%20logic&oldid=921437906
http://en.wikipedia.org/w/index.php?title=First-order%20logic&oldid=921437906
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mathematical objects and operations expressed

in set theory and logic allows us to reason

therewith.
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set theory

1. K. Ciesielski. Set Theory for the Working Mathematician. London
Mathematical Society Student Texts. Cambridge University Press, 1997.
ISBN: 9780521594653. A readable introduction to set theory.

2. H.B. Enderton. Elements of Set Theory. Elsevier Science, 1977. ISBN:
9780080570426. A gentle introduction to set theory and mathematical
reasoning—a great place to start.

set

field

addition

multiplication

subtraction

division

real numbers

3. When the natural numbers include zero, we write N0.

set membership

sets.setintro Introduction to set theory

Set theory is the language of the modern

foundation of mathematics, as discussed in

Lec. itself.found. It is unsurprising, then, that it

arises throughout the study of mathematics. We

will use set theory extensively in ?? on

probability theory.

The axioms of ZFC set theory were introduced

in Lec. itself.found. Instead of proceeding in the

pure mathematics way of introducing and

proving theorems, we will opt for a more

applied approach in which we begin with some

simple definitions and include basic operations.

A more thorough and still readable treatment is

given by Ciesielski1 and a very gentle version

by Enderton.2

A set is a collection of objects. Set theory gives

us a way to describe these collections. Often, the

objects in a set are numbers or sets of numbers.

However, a set could represent collections of

zebras and trees and hairballs. For instance,

here are some sets:

{1, 5, π} {zebra named “Calvin”, a burnt cheeto} {{1, 2}, {5,hippo, 7}, 62}.

A field is a set with special structure. This

structure is provided by the addition (+) and

multiplication (×) operators and their inverses
subtraction (−) and division (÷). The
quintessential example of a field is the set of real

numbers R, which admits these operators,
making it a field. The reals R, the complex
numbers C, the integers Z, and the natural
numbers3 N are the fields we typically consider.

Set membership is the belonging of an object to

a set. It is denoted with the symbol ∈, which can
be read “is an element of,” for element x and set

X:
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set operations

union

intersection

empty set

set difference

subset

proper subset

x ∈ X.

For instance, we might say 7 ∈ {1, 7, 2} or

4 /∈ {1, 7, 2}. Or, we might declare that a is a real

number by stating: x ∈ R.
Set operations can be used to construct new sets

from established sets. We consider a few

common set operations, now.

The union ∪ of sets is the set containing all the
elements of the original sets (no repetition

allowed). The union of sets A and B is denoted

A ∪ B. For instance, let A = {1, 2, 3} and

B = {−1, 3}; then

A ∪ B = {1, 2, 3,−1}.

The intersection ∩ of sets is a set containing the
elements common to all the original sets. The

intersection of sets A and B is denoted A∩B. For
instance, let A = {1, 2, 3} and B = {2, 3, 4}; then

A ∩ B = {2, 3}.

If two sets have no elements in common, the

intersection is the empty set ∅ = {}, the unique

set with no elements.

The set difference of two sets A and B is the set

of elements in A that aren’t also in B. It is

denoted A \ B. For instance, let A = {1, 2, 3} and

B = {2, 3, 4}. Then

A \ B = {1} B \A = {4}.

A subset ⊆ of a set is a set, the elements of
which are contained in the original set. If the

two sets are equal, one is still considered a

subset of the other. We call a subset that is not

equal to the other set a proper subset ⊂. For
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complement

cartesian product

set-builder notation

map

function

value

domain

codomain

image

instance, let A = {1, 2, 3} and B = {1, 2}. Then

B ⊆ A B ⊂ A A ⊆ A.

The complement of a subset is a set of elements

of the original set that aren’t in the subset. For

instance, if B ⊆ A, then the complement of B,
denoted B is

B = A \ B.

The cartesian product of two sets A and B is

denoted A× B and is the set of all ordered pairs
(a, b) where a ∈ A and b ∈ B. It’s worthwhile
considering the following notation for this

definition:

A× B = {(a, b) | a ∈ A and b ∈ B}

which means “the cartesian product of A and B

is the ordered pair (a, b) such that a ∈ A and

b ∈ B” in set-builder notation (Wikipedia.

Set-builder notation —Wikipedia, The Free

Encyclopedia. http:

//en.wikipedia.org/w/index.php?title=Set-

builder%20notation&oldid=917328223. [Online;

accessed 29-October-2019]. 2019).

Let A and B be sets. A map or function f from A

to B is an assignment of some element a ∈ A to

each element b ∈ B. The function is denoted
f : A→ B and we say that fmaps each element

a ∈ A to an element f(a) ∈ B called the value of
a under f, or a 7→ f(a). We say that f has domain

A and codomain B. The image of f is the subset

of its codomain B that contains the values of all

elements mapped by f from its domain A.

http://en.wikipedia.org/w/index.php?title=Set-builder%20notation&oldid=917328223
http://en.wikipedia.org/w/index.php?title=Set-builder%20notation&oldid=917328223
http://en.wikipedia.org/w/index.php?title=Set-builder%20notation&oldid=917328223
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first-order logic

atomistic proposition

compound proposition

logical connectives

not

and
or

truth table

universal quantifier symbol

existential quantifier

sets.logic Logical connectives and quantifiers

In order to make compound propositions, we

need to define logical connectives. In order to

specify quantities of variables, we need to

define logical quantifiers. The following is a

form of first-order logic (Wikipedia, First-order

logic —Wikipedia, The Free Encyclopedia).

Logical connectives

A proposition can be either true > and false ⊥.
When it does not contain a logical connective, it

is called an atomistic proposition. To combine

propositions into a compound proposition, we

require logical connectives. They are not (¬),

and (∧), and or (∨). Table logic.1 is a truth table

for a number of connectives.

Quantifiers

Logical quantifiers allow us to indicate the

quantity of a variable. The universal quantifier

symbol ∀means “for all”. For instance, let A be

a set; then ∀a ∈ Ameans “for all elements in A”

and gives this quantity variable a. The

existential quantifier ∃means “there exists at
least one” or “for some”. For instance, let A be a

set; then ∃a ∈ A . . .means “there exists at least
one element a in A….”

Table logic.1: a truth table for logical connectives. The first two columns
are the truth values of propositions p and q; the rest are outputs.

not and or nand nor xor xnor
p q ¬p p∧ q p∨ q p ↑ q p ↓ q p Y q p⇔ q

⊥ ⊥ > ⊥ ⊥ > > ⊥ >
⊥ > > ⊥ > > ⊥ > ⊥
> ⊥ ⊥ ⊥ > > ⊥ > ⊥
> > ⊥ > > ⊥ ⊥ ⊥ >
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sets.exe Exercises for Chapter sets

Exercise sets.hardhat

For the following, write the set described in

set-builder notation.

a. A = {2, 3, 5, 9, 17, 33, · · · }.
b. B is the set of integers divisible by 11.

c. C = {1/3, 1/4, 1/5, · · · }.
d. D is the set of reals between −3 and 42.

Exercise sets.2

Let x,y ∈ Rn. Prove the Cauchy-Schwarz

Inequality

|x · y| 6 ‖x‖‖y‖. (1)

Hint: you may find the geometric definition of

the dot product helpful.

Exercise sets.3

Let x ∈ Rn. Prove that

x · x = ‖x‖2. (2)

Hint: you may find the geometric definition of

the dot product helpful.

Exercise sets.4

Let x,y ∈ Rn. Prove the Triangle Inequality

‖x+ y‖ 6 ‖x‖+ ‖y‖. (3)

Hint: you may find the Cauchy-Schwarz

Inequality helpful.
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Probability theory

1. For a good introduction to probability theory, see Ash (Robert B.
Ash. Basic Probability Theory. Dover Publications, Inc., 2008) or Jaynes
andothers. (E.T. Jaynes andothers. Probability Theory: The Logic of
Science. Cambridge University Press, 2003. ISBN: 9780521592710. An
excellent and comprehensive introduction to probability theory.)

interpretation of probability

event

prob.meas Probability and measurement

Probability theory is a well-defined branch of

mathematics. Andrey Kolmogorov described a

set of axioms in 1933 that are still in use today as

the foundation of probability theory.1

We will implicitly use these axioms in our

analysis. The interpretation of probability is a

contentious matter. Some believe probability

quantifies the frequency of the occurrence of

some event that is repeated in a large number of

trials. Others believe it quantifies the state of our

knowledge or belief that some event will occur.

In experiments, our measurements are tightly

coupled to probability. This is apparent in the

questions we ask. Here are some examples.

1. How common is a given event?

2. What is the probability we will reject a

good theory based on experimental

results?

3. How repeatable are the results?

4. How confident are we in the results?

5. What is the character of the fluctuations

and drift in the data?

6. How much data do we need?
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probability space

sample space

outcomes

event

prob.prob Basic probability theory

The mathematical model for a class of

measurements is called the probability space

and is composed of a mathematical triple of a

sample space Ω, σ-algebra F, and probability

measure P, typically denoted (Ω,F, P), each of

which we will consider in turn (Wikipedia.

Probability space —Wikipedia, The Free

Encyclopedia.

http://en.wikipedia.org/w/index.php?title=

Probability%20space&oldid=914939789. [Online;

accessed 31-October-2019]. 2019).

The sample space Ω of an experiment is the set

representing all possible outcomes of the

experiment. If a coin is flipped, the sample

space is Ω = {H, T }, where H is heads and T is

tails. If a coin is flipped twice, the sample space

could be

Ω = {HH,HT, TH, TT }.

However, the same experiment can have

different sample spaces. For instance, for two

coin flips, we could also choose

Ω = {the flips are the same, the flips are different}.

We base our choice ofΩ on the problem at hand.

An event is a subset of the sample space. That

is, an event corresponds to a yes-or-no question

about the experiment. For instance, event A

(remember: A ⊆ Ω) in the coin flipping
experiment (two flips) might be A = {HT, TH}. A

is an event that corresponds to the question, “Is

the second flip different than the first?” A is the

event for which the answer is “yes.”

http://en.wikipedia.org/w/index.php?title=Probability%20space&oldid=914939789
http://en.wikipedia.org/w/index.php?title=Probability%20space&oldid=914939789
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σ-algebra

probability measure

Algebra of events

Because events are sets, we can perform the

usual set operations with them.

Example prob.prob-1 re: set operations with events

Consider a toss of a single die. We choose the

sample space to be Ω = {1, 2, 3, 4, 5, 6}. Let the

following define events.

A ≡ {the result is even} = {2, 4, 6}

B ≡ {the result is greater than 2} = {3, 4, 5, 6}.

Find the following event combinations:

A ∪ B A ∩ B A \ B B \A A \ B.

The σ-algebra F is the collection of events of

interest. Often, F is the set of all possible events

given a sample space Ω, which is just the power

set of Ω (Wikipedia, Probability space —

Wikipedia, The Free Encyclopedia). When

referring to an event, we often state that it is an

element of F. For instance, we might say an

event A ∈ F.

We’re finally ready to assign probabilities to

events. We define the probability measure

P : F → [0, 1] to be a function satisfying the

following conditions.

1. For every event A ∈ F, the probability

measure of A is greater than or equal to

zero—i.e. P(A) > 0.

2. If an event is the entire sample space, its

probability measure is unity—i.e. if

A = Ω, P(A) = 1.
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3. If events A1, A2, · · · are disjoint sets (no
elements in common), then

P(A1 ∪A2 ∪ · · · ) = P(A1) + P(A2) + · · · .

We conclude the basics by observing four facts

that can be proven from the definitions above.

1.

2.

3.

4.
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independent

prob.condition Independence and conditional

probability

Two events A and B are independent if and only

if

P(A ∩ B) = P(A)P(B).

If an experimenter must make a judgment

without data about the independence of events,

they base it on their knowledge of the events, as

discussed in the following example.

Example prob.condition-1 re: independence

Answer the following questions and

imperatives.

1. Consider a single fair die rolled twice.

What is the probability that both rolls are

6?

2. What changes if the die is biased by a

weight such that P({6}) = 1/7?

3. What changes if the die is biased by a

magnet, rolled on a magnetic dice-rolling

tray such that P({6}) = 1/7?

4. What changes if there are two dice, biased

by weights such that for each P({6}) = 1/7,

rolled once, both resulting in 6?

5. What changes if there are two dice, biased

by magnets, rolled together?
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dependent

conditional probability

Conditional probability

If events A and B are somehow dependent, we

need a way to compute the probability of B

occurring given that A occurs. This is called the

conditional probability of B given A, and is

denoted P(B | A). For P(A) > 0, it is defined as

P(B | A) =
P(A ∩ B)
P(A)

. (1)

We can interpret this as a restriction of the

sample space Ω to A; i.e. the new sample space

Ω ′ = A ⊆ Ω. Note that if A and B are

independent, we obtain the obvious result:

P(B | A) =
P(A)P(B)

P(A)

= P(B).

Example prob.condition-2 re: dependence

Consider two unbiased dice rolled once.

Let events A = {sum of faces = 8} and

B = {faces are equal}. What is the probability

the faces are equal given that their sum is 8?
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Bayes’ theorem

sensitivity

detection rate

prob.bay Bayes’ theorem

Given two events A and B, Bayes’ theorem (aka

Bayes’ rule) states that

P(A | B) = P(B | A)
P(A)

P(B)
. (1)

Sometimes this is written

P(A | B) =
P(B | A)P(A)

P(B | A)P(A) + P(B | ¬A)P(¬A)
(2)

=
1

1+
P(B | ¬A)

P(B | A)
· P(¬A)
P(A)

. (3)

This is a useful theorem for determining a test’s

effectiveness. If a test is performed to determine

whether an event has occurred, we might as

questions like “if the test indicates that the event

has occurred, what is the probability it has

actually occurred?” Bayes’ theorem can help

compute an answer.

Testing outcomes

The test can be either positive or negative ,

meaning it can either indicate or not indicate

that A has occurred. Furthermore, this result

can be either true☺ or false☹.

A ¬A

positive (B) true ☺ false ☹

negative (¬B) false ☹ true ☺

Table bay.1: test outcome B
for eventA.

There

are four options,

then. Consider an

event A and an event

that is a test result

B indicating that

event A has occurred.

Table bay.1 shows

these four possible test outcomes. The event A

occurring can lead to a true positive or a false

negative, whereas ¬A can lead to a true negative

or a false positive.

Terminology is important, here.

• P({true positive}) = P(B | A), aka

sensitivity or detection rate,
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specificity

posterior probability

prior probability

• P({true negative}) = P(¬B | ¬A), aka

specificity,

• P({false positive}) = P(B | ¬A),

• P({false negative}) = P(¬B | A).

Clearly, the desirable result for any test is that it

is true. However, no test is true 100 percent of

the time. So sometimes it is desirable to err on

the side of the false positive, as in the case of a

medical diagnostic. Other times, it is more

desirable to err on the side of a false negative, as

in the case of testing for defects in manufactured

balloons (when a false negative isn’t a big deal).

Posterior probabilities

Returning to Bayes’ theorem, we can evaluate

the posterior probability P(A | B) of the event A

having occurred given that the test B is positive,

given information that includes the prior

probability P(A) of A. The form in Eq. 2 or (3) is

typically useful because it uses commonly

known test probabilities: of the true positive

P(B | A) and of the false positive P(B | ¬A). We

calculate P(A | B) when we want to interpret test

results.

Some interesting results can be found from this.

For instance, if we let P(B | A) = P(¬B | ¬A)

(sensitivity equal specificity) and realize that

P(B | ¬A) + P(¬B | ¬A) = 1 (when ¬A, either B or

¬B), we can derive the expression

P(B | ¬A) = 1− P(B | A). (4)

Using this and P(¬A) = 1− P(A) in Eq. 3 gives

(recall we’ve assumed sensitivity equals

specificity!)

P(A | B) =
1

1+
1− P(B | A)

P(B | A)
· 1− P(A)
P(A)

(5)

=
1

1+

(
1

P(B | A)
− 1

)(
1

P(A)
− 1

) (6)
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Figure bay.1: for different high-sensitivities, the probability that an event
A occurred given that a test for itB is positive versus the probability that the event
A occurs, under the assumption the specificity equals the sensitivity.

This expression is plotted in Fig. bay.1. See that

a positive result for a rare event (small P(A)) is

hard to trust unless the sensitivity P(B | A) and

specificity P(¬B | ¬A) are very high, indeed!

Example prob.bay-1 re: Bayes’ theorem

Suppose 0.1% of springs manufactured at a

given plant are defective. Suppose you need to

design a test that, when it indicates a deffective

part, the part is actually defective 99% of the

time. What sensitivity should your test have

assuming it can bemade equal to its specificity?

The following was generated from a Jupyter

notebook with the following filename and

kernel.

notebook filename: bayes_theorem_example_01.ipynb
notebook kernel: python3

from sympy import * # for symbolics
import numpy as np # for numerics
import matplotlib.pyplot as plt # for plots!
from IPython.display import display, Markdown, Latex
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Define symbolic variables.

var('p_A,p_nA,p_B,p_nB,p_B_A,p_B_nA,p_A_B',real=True)

(p_A, p_nA, p_B, p_nB, p_B_A, p_B_nA, p_A_B)

Beginning with Bayes’ theorem and assuming

the sensitivity and specificity are equal by Eq. 4,

we can derive the following expression for the

posterior probability P(A | B).

p_A_B_e1 = Eq(p_A_B,p_B_A*p_A/p_B).subs(
{

p_B: p_B_A*p_A+p_B_nA*p_nA, # conditional prob
p_B_nA: 1-p_B_A, # Eq (3.5)
p_nA: 1-p_A

}
)
display(p_A_B_e1)

pAB =
pApBA

pApBA + (1− pA) (1− pBA)
Solve this for P(B | A), the quantity we seek.

p_B_A_sol = solve(p_A_B_e1,p_B_A,dict=True)
p_B_A_eq1 = Eq(p_B_A,p_B_A_sol[0][p_B_A])
display(p_B_A_eq1)

pBA =
pAB (1− pA)

−2pApAB + pA + pAB

Now let’s substitute the given probabilities.

p_B_A_spec = p_B_A_eq1.subs(
{

p_A: 0.001,
p_A_B: 0.99,

}
)
display(p_B_A_spec)

pBA = 0.999989888981011

That’s a tall order!
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random variable

discrete random variable

continuous random variable

prob.rando Random variables

Probabilities are useful even when they do not

deal strictly with events. It often occurs that we

measure something that has randomness

associated with it. We use random variables to

represent these measurements.

A random variable X : Ω→ R is a function that

maps an outcome ω from the sample space Ω to

a real number x ∈ R, as shown in Fig. rando.1. A
random variable will be denoted with a capital

letter (e.g. X and K) and a specific value that it

maps to (the value) will be denoted with a

lowercase letter (e.g. x and k).

A discrete random variable K is one that takes

on discrete values. A continuous random

variable X is one that takes on continuous

values.

Example prob.rando-1 re: dice again

Roll two unbiased dice. Let K be a random

variable representing the sum of the two. Let

P(k) be the probability of the result k ∈ K. Plot
and interpret P(k).

r.v.
R

Ω

outcome ω

x

X

Figure rando.1: a random variable X maps an outcomeω ∈ Ω to
an x ∈ R.
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Example prob.rando-2 re: Johnson-Nyquist noise

A resistor at nonzero temperature without

any applied voltage exhibits an interesting

phenomenon: its voltage randomly fluctuates.

This is called Johnson-Nyquist noise and is a

result of thermal excitation of charge carriers

(electrons, typically). For a given resistor

and measurement system, let the probability

density function fV of the voltage V across an

unrealistically hot resistor be

fV (V) =
1√
π
e−V2

.

Plot and interpret the meaning of this function.
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frequency distribution

probability mass function

Figure pxf.1: plot of a probability mass function.

frequency density distribution

probability density function

prob.pxf Probability density and mass functions

Consider an experiment that measures a

random variable. We can plot the relative

frequency of the measurand landing in different

“bins” (ranges of values). This is called a

frequency distribution or a probability mass

function (PMF).

Consider, for instance, a probability mass

function as plotted in Fig. pxf.1, where a

frequency ai can be interpreted as an estimate

of the probability of the measurand being in the

ith interval. The sum of the frequencies must be

unity:

k∑
i=1

ai = 1

with k being the number of bins.

The frequency density distribution is similar to

the frequency distribution, but with ai 7→ ai/∆x,

where ∆x is the bin width.

If we let the bin width approach zero, we derive

the probability density function (PDF)

f(x) = lim
k→∞
∆x→0

k∑
j=1

aj/∆x. (1)

We typically think of a probability density

function f, like the one in Fig. pxf.2 as a function

that can be integrated over to find the

probability of the random variable (measurand)

being in an interval [a, b]:

P(x ∈ [a, b]) =

ˆ b

a

f(χ)dχ. (2)

Of course,

P(x ∈ (−∞,∞)) =

ˆ ∞
−∞ f(χ)dχ

= 1.
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Figure pxf.2: plot of a probability density function.

binomial distribution PDF

We now consider a common PMF and a

common PDF.

Binomial PMF

Consider a random binary sequence of length n

such that each element is a random 0 or 1,

generated independently, like

(1, 0, 1, 1, 0, · · · , 1, 1). (3)

Let events {1} and {0} be mutually exclusive and

exhaustive and P({1}) = p. The probability of the

sequence above occurring is

P((1, 0, 1, 1, 0, · · · , 1, 1)) = p(1− p)pp(1− p) · · ·pp.

There are n choose k,(
n

k

)
=

n!
k!(n− k)! , (4)

possible combinations of k ones for n bits.

Therefore, the probability of any combination of

k ones in a series is

f(k) =

(
n

k

)
pk(1− p)n−k. (5)

We call Eq. 5 the binomial distribution PDF.

Example prob.pxf-1 re: Binomial PMF

Consider a field sensor that fails for a given

measurement with probability p. Given

n measurements, plot the binomial PMF

as a function of k failed measurements

for a few different probabilities of failure

p ∈ [0.04, 0.25, 0.5, 0.75, 0.96].
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p = 0.96

Figure pxf.3: binomial PDF for n = 100 measurements and different
values of P({1}) = p, the probability of a measurement error. The plot is
generated by the Matlab code of Fig. pxf.4.

Fig. pxf.4 shows Matlab code for constructing

the PDFs plotted in Fig. pxf.3. Note that the

symmetry is due to the fact that events {1} and

{0} are mutually exclusive and exhaustive.

Example prob.pxf-2 re: hi

Sedmattis, erat sit amet gravidamalesuada, elit

augue egestas diam, tempus scelerisque nunc

nisl vitae libero. Sed consequat feugiat massa.

Nunc porta, eros in eleifend varius, erat leo ru-

trum dui, non convallis lectus orci ut nibh. Sed

loremmassa, nonummy quis, egestas id, condi-

mentum at, nisl. Maecenas at nibh. Aliquam et

augue at nunc pellentesque ullamcorper. Duis

nisl nibh, laoreet suscipit, convallis ut, rutrum

id, enim. Phasellus odio. Nulla nulla elit, mole-

stie non, scelerisque at, vestibulum eu, nulla. Ut

odio nisl, facilisis id, mollis et, scelerisque nec,

enim. Aenean sem leo, pellentesque sit amet,

scelerisque sit amet, vehicula pellentesque, sa-

pien.
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%% parameters
n = 100;
k_a = linspace(1,n,n);
p_a = [.04,.25,.5,.75,.96];

%% binomial function
f = @(n,k,p) nchoosek(n,k)*p^k*(1-p)^(n-k);

% loop through to construct an array
f_a = NaN*ones(length(k_a),length(p_a));
for i = 1:length(k_a)

for j = 1:length(p_a)
f_a(i,j) = f(n,k_a(i),p_a(j));

end
end

%% plot
figure
colors = jet(length(p_a));
for j = 1:length(p_a)

bar(...
k_a,f_a(:,j),...
'facecolor',colors(j,:),...
'facealpha',0.5,...
'displayname', ['$p = ',num2str(p_a(j)),'$']...

); hold on
end
leg = legend('show','location','north');
set(leg,'interpreter','latex')
hold off
xlabel('number of ones in sequence k')
ylabel('probability')
xlim([0,100])

Figure pxf.4: a Matlab script for generating binomial PMFs.
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−3 −2 −1 0 1 2 3

random variable x

Figure pxf.5: PDF for Gaussian random variable x, mean µ = 0, and
standard deviation σ = 1/

√
2.

Gaussian or normal random variable

mean

standard deviation

variance

Gaussian PDF

The Gaussian or normal random variable x has

PDF

f(x) =
1

σ
√
2π

exp −(x− µ)2

2σ2
. (6)

Although we’re not quite ready to understand

these quantities in detail, it can be shown that

the parameters µ and σ have the following

meanings:

• µ is the mean of x,

• σ is the standard deviation of x, and

• σ2 is the variance of x.

Consider the “bell-shaped” Gaussian PDF in

Fig. pxf.5. It is always symmetric. The mean µ is

its central value and the standard deviation σ is

directly related to its width. We will continue to

explore the Gaussian distribution in the

following lectures, especially in

Lec. stats.confidence.
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expected value

expectation

mean

prob.E Expectation

Recall that a random variable is a function

X : Ω→ R that maps from the sample space to

the reals. Random variables are the arguments

of probability mass functions (PMFs) and

probability density functions (PDFs).

The expected value (or expectation) of a random

variable is akin to its “average value” and

depends on its PMF or PDF. The expected value

of a random variable X is denoted 〈X〉 or E [X].

There are two definitions of the expectation, one

for a discrete random variable, the other for a

continuous random variable. Before we define,

them, however, it is useful to predefine the most

fundamental property of a random variable, its

mean.

Definition prob.1: mean

The mean of a random variable X is defined as

mX = E [X] .

Let’s begin with a discrete random variable.

Definition prob.2: expectation of a discrete

random variable
Let K be a discrete random variable and f its

PMF. The expected value of K is defined as

E [K] =
∑
∀k
kf(k).

Example prob.E-1 re: expectation of a discrete random variable

Given a discrete random variable K with PMF

shown below, what is its meanmK?
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Let us now turn to the expectation of a

continuous random variable.

Definition prob.3: expectation of a continuous

random variable
Let X be a continuous random variable and f its

PDF. The expected value of X is defined as

E [X] =

ˆ ∞
−∞ xf(x)dx.

Example prob.E-2 re: expectation of a continuous random

variableGiven a continuous random variable X with

Gaussian PDF f, what is the expected value of

X?

random variable x
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Due to its sum or integral form, the expected

value E [·] has some familiar properties for
random variables X and Y and reals a and b.

E [a] = a (1a)

E [X+ a] = E [X] + a (1b)

E [aX] = aE [X] (1c)

E [E [X]] = E [X] (1d)

E [aX+ bY] = aE [X] + bE [Y] . (1e)
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central moments

variance

prob.moments Central moments

Given a probability mass function (PMF) or

probability density function (PDF) of a random

variable, several useful parameters of the

random variable can be computed. These are

called central moments, which quantify

parameters relative to its mean.

Definition prob.4: central moments

The nth central moment of random variable X,

with PDF f, is defined as

E [(X− µX)
n] =

ˆ ∞
−∞(x− µX)

nf(x)dx.

For discrete random variable K with PMF f,

E [(K− µK)
n] =

∞∑
∀k

(k− µK)
nf(k).

Example prob.moments-1 re: first moment

Prove that the first moment of continuous

random variable X is zero.

The second central moment of random variable

X is called the variance and is denoted

σ2X or Var [X] or E
[
(X− µX)

2
]
. (1)

The variance is a measure of the width or

spread of the PMF or PDF. We usually compute

the variance with the formula
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standard deviation

skewness

asymmetry

kurtosis

tailedness

Var [X] = E
[
X2

]
− µ2X.

Other properties of variance include, for real

constant c,

Var [c] = 0 (2)

Var [X+ c] = Var [X] (3)

Var [cX] = c2 Var [X] . (4)

The standard deviation is defined as

σX =
√
σ2X.

Although the variance is mathematically more

convenient, the standard deviation has the same

physical units as X, so it is often the more

physically meaningful quantity. Due to its

meaning as the width or spread of the

probability distribution, and its sharing of

physical units, it is a convenient choice for error

bars on plots of a random variable.

The skewness Skew [X] is a normalized third

central moment:

Skew [X] =
E
[
(X− µX)

3
]

σ3X
. (5)

Skewness is a measure of asymmetry of a

random variable’s PDF or PMF. For a symmetric

PMF or PDF, such as the Gaussian PDF,

Skew [X] = 0.

The kurtosis Kurt [X] is a normalized fourth
central moment:

Kurt [X] =
E
[
(X− µX)

4
]

σ4X
. (6)

Kurtosis is a measure of the tailedness of a

random variable’s PDF or PMF. “Heavier” tails

yield higher kurtosis.

A Gaussian random variable has PDF with

kurtosis 3. Given that for Gaussians both
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skewness and kurtosis have nice values (0 and

3), we can think of skewness and and kurtosis as

measures of similarity to the Gaussian PDF.
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prob.exe Exercises for Chapter prob

Exercise prob.5

Several physical processes can be modeled with

a random walk: a process of interatively

changing a quantity by some random amount.

Infinitely many variations are possible, but

common factors of variation include probability

distribution, step size, dimensionality (e.g.

one-dimensional, two-dimensional, etc.), and

coordinate system. Graphical representations of

these walks can be beautiful. Develop a

computer program that generates random

walks and corresponding graphics. Do it well

and call it art because it is.
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machine learning

1. Ash, Basic Probability Theory.

2. Jaynes andothers, Probability Theory: The Logic of Science.

stats

Statistics

Whereas probability theory is primarily focused

on the relations among mathematical objects,

statistics is concerned with making sense of the

outcomes of observation (Steven S. Skiena.

Calculated Bets: Computers, Gambling, and

Mathematical Modeling to Win. Outlooks.

Cambridge University Press, 2001. DOI:

10.1017/CBO9780511547089. This includes a lucid

section on probability versus statistics, also

available here: https://www3.cs.stonybrook.

edu/~skiena/jaialai/excerpts/node12.html.).

However, we frequently use statistical methods

to estimate probabilistic models. For instance,

we will learn how to estimate the standard

deviation of a random process we have some

reason to expect has a Gaussian probability

distribution.

Statistics has applications in nearly every

applied science and engineering discipline. Any

time measurements are made, statistical

analysis is how one makes sense of the results.

For instance, determining a reasonable level of

confidence in a measured parameter requires

statistics.

A particularly hot topic nowadays is machine

learning, which seems to be a field with

applications that continue to expand. This field

is fundamentally built on statistics.

A good introduction to statistics appears at the

end of Ash.1 A more involved introduction is

given by Jaynes andothers.2 The treatment by

https://doi.org/10.1017/CBO9780511547089
https://www3.cs.stonybrook.edu/~skiena/jaialai/excerpts/node12.html
https://www3.cs.stonybrook.edu/~skiena/jaialai/excerpts/node12.html
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3. Erwin Kreyszig. Advanced Engineering Mathematics. 10th. John
Wiley & Sons, Limited, 2011. ISBN: 9781119571094. The authoritative
resource for engineering mathematics. It includes detailed accounts of
probability, statistics, vector calculus, linear algebra, fourier analysis,
ordinary and partial differential equations, and complex analysis. It also
includes several other topics with varying degrees of depth. Overall, it
is the best place to start when seeking mathematical guidance.

Kreyszig3 is rather incomplete, as will be our

own.
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population

sample

random

machine learning

training

training set

features

predictive model

stats.terms Populations, samples, and machine

learning

An experiment’s population is a complete

collection of objects that we would like to study.

These objects can be people, machines,

processes, or anything else we would like to

understand experimentally.

Of course, we typically can’t measure all of the

population. Instead, we take a subset of the

population—called a sample—and infer the

characteristics of the entire population from this

sample.

However, this inference that the sample is

somehow representative of the population

assumes the sample size is sufficiently large and

that the sampling is random. This means

selection of the sample should be such that no

one group within a population are

systematically over- or under-represented in the

sample.

Machine learning is a field that makes extensive

use of measurements and statistical inference.

In it, an algorithm is trained by exposure to

sample data, which is called a training set. The

variables measured are called features.

Typically, a predictive model is developed that

can be used to extrapolate from the data to a

new situation. The methods of statistical

analysis we introduce in this chapter are the

foundation of most machine learning methods.

Example stats.terms-1 re: combat boots

Consider a robot, Pierre, with a particular

gravitas and sense of style. He seeks just the

right-looking pair of combat boots for wearing

in the autumn rains. Pierre is to purchase the

boots online via image recognition, and decides

to gather data by visiting a hipster hangout

one evening to train his style. For contrast, he
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also watches footage of a White Nationalist

rally, focusing special attention on the boots

of wearers of khakis and polos. Comment on

Pierre’s methods.
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sample mean

population mean

stats.sample Estimation of sample mean and variance

Estimation and sample statistics

The mean and variance definitions of

Lec. prob.E and Lec. prob.moments apply only

to a random variable for which we have a

theoretical probability distribution. Typically, it

is not until after having performed many

measurements of a random variable that we can

assign a good distribution model. Until then,

measurements can help us estimate aspects of

the data. We usually start by estimating basic

parameters such as mean and variance before

estimating a probability distribution.

There are two key aspects to randomness in the

measurement of a random variable. First, of

course, there is the underlying randomness with

its probability distribution, mean, standard

deviation, etc., which we call the population

statistics. Second, there is the statistical

variability that is due to the fact that we are

estimating the random variable’s

statistics—called its sample statistics—from

some sample. Statistical variability is decreased

with greater sample size and number of

samples, whereas the underlying randomness of

the random variable does not decrease. Instead,

our estimates of its probability distribution and

statistics improve.

Sample mean, variance, and standard deviation

The arithmetic mean or sample mean of a

measurand with sample size N, represented by

random variable X, is defined as

x =
1

N

N∑
i=1

xi. (1)

If the sample size is large, x→ mX (the sample

mean approaches the mean). The population

mean is another name for the meanmX, which
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sample variance

population variance

is equal to

mX = lim
N→∞ 1

N

N∑
i=1

xi. (2)

Recall that the definition of the mean is

mX = E [x].

The sample variance of a measurand

represented by random variable X is defined as

S2X =
1

N− 1

N∑
i=1

(xi − x)
2. (3)

If the sample size is large, S2X → σ2X (the sample

variance approaches the variance). The

population variance is another term for the

variance σ2X, and can be expressed as

σ2X = lim
N→∞ 1

N− 1

N∑
i=1

(xi − x)
2. (4)

Recall that the definition of the variance is

σ2X = E
[
(X−mX)

2
]
.

The sample standard deviation of a measurand

represented by random variable X is defined as

SX =
√
S2X. (5)

If the sample size is large, SX → σX (the sample

standard deviation approaches the standard

deviation). The population standard deviation

is another term for the standard deviation σX,

and can be expressed as

σX = lim
N→∞

√
S2X. (6)

Recall that the definition of the standard

deviation is σX =
√
σ2X.

Sample statistics as random variables

There is an ambiguity in our usage of the term

“sample.” It can mean just one measurement or

it can mean a collection of measurements

gathered together. Hopefully, it is clear from

context.
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mean of means Xi

mean of standard deviations SXi

standard deviation of means SXi

standard deviation of standard deviations SSXi

In the latter sense, often we collect multiple

samples, each of which has its own sample

mean Xi and standard deviation SXi
. In this

situation, Xi and SXi
are themselves random

variables (meta af, I know). This means they

have their own sample means Xi and SXi
and

standard deviations SXi
and SSXi

.

The mean of means Xi is equivalent to a mean

with a larger sample size and is therefore our

best estimate of the mean of the underlying

random process. The mean of standard

deviations SXi
is our best estimate of the

standard deviation of the underlying random

process. The standard deviation of means SXi
is

a measure of the spread in our estimates of the

mean. It is our best estimate of the standard

deviation of the statistical variation and should

therefore tend to zero as sample size and

number of samples increases. The standard

deviation of standard deviations SSXi
is a

measure of the spread in our estimates of the

standard deviation of the underlying process. It

should also tend to zero as sample size and

number of samples increases.

Let N be the size of each sample. It can be

shown that the standard deviation of the means

SXi
can be estimated from a single sample

standard deviation:

SXi
≈
SXi√
N
. (7)

This shows that as the sample size N increases,

the statistical variability of the mean decreases

(and in the limit approaches zero).

Nonstationary signal statistics

The sample mean, variance, and standard

deviation definitions, above, assume the

random process is stationary—that is, its

population mean does not vary with time.

However, a great many measurement signals
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have populations that do vary with time,

i.e. they are nonstationary. Sometimes the

nonstationarity arises from a “drift” in the dc

value of a signal or some other slowly changing

variable. But dynamic signals can also change in

a recognizable and predictable manner, as

when, say, the temperature of a room changes

when a window is opened or when a water level

changes with the tide.

Typically, we would like to minimize the effect

of nonstationarity on the signal statistics. In

certain cases, such as drift, the variation is a

nuissance only, but other times it is the point of

the measurement.

Two common techniques are used, depending

on the overall type of nonstationarity. If it is

periodic with some known or estimated period,

the measurement data series can be “folded” or

“reshaped” such that the ith measurement of

each period corresponds to the ith measurement

of all other periods. In this case, somewhat

counterintuitively, we can consider the ith

measurements to correspond to a sample of size

N, where N is the number of periods over which

measurements are made.

When the signal is aperiodic, we often simply

divide it into “small” (relative to its overall

trend) intervals over which statistics are

computed, separately.

Note that in this discussion, we have assumed

that the nonstationarity of the signal is due to a

variable that is deterministic (not random).

Example stats.sample-1 re: measurement of gaussian noise on

nonstationary signal

Consider the measurement of the temperature

inside a desktop computer chassis via an

inexpensive thermistor, a resistor that changes

resistance with temperature. The processor and

power supply heat the chassis in a manner that
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depends on processing demand. For the test

protocol, the processors are cycled sinusoidally

through processing power levels at a frequency

of 50 mHz for nT = 12 periods and sampled

at 1 Hz. Assume a temperature fluctuation

between about 20 and 50 C and gaussian noise

with standard deviation 4 C. Consider a sample

to be the multiple measurements of a certain

instant in the period.

1. Generate and plot simulated temperature

data as a time series and as a histogram or

frequency distribution. Comment onwhy

the frequency distribution sucks.

2. Compute the sample mean and standard

deviation for each sample in the cycle.

3. Subtract the mean from each sample

in the period such that each sample

distribution is centered at zero. Plot

the composite frequency distribution of

all samples, together. This represents

our best estimate of the frequency

distribution of the underlying process.

4. Plot a comparison of the theoretical

mean, which is 35, and the sample mean

of means with an error bar. Vary the

number of samples nT and comment on

its effect on the estimate.

5. Plot a comparison of the theoretical

standard deviation and the sample mean

of sample standard deviations with an

error bar. Vary the number of samples

nT and comment on its effect on the

estimate.

6. Plot the sample means over a single

period with error bars of ± one sample

standard deviation of the means. This

represents our best estimate of the

sinusoidal heating temperature. Vary the

number of samples nT and comment on
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the estimate.

clear; close all; % clear kernel

Generate the temperature data

The temperature data can be generated by

constructing an array that is passed to a

sinusoid, then “randomized” by gaussian

random numbers. Note that we add 1 to np
and n to avoid the sneaky fencepost error.

f = 50e-3; % Hz ... sinusoid frequency
a = 15; % C ... amplitude of oscillation
dc = 35; % C ... dc offset of oscillation
fs = 1; % Hz ... sampling frequency
nT = 12; % number of sinusoid periods
s = 4; % C ... standard deviation
np = fs/f+1; % number of samples per period
n = nT*np+1; % total number of samples

t_a = linspace(0,nT/f,n); % time array
sin_a = dc + a*sin(2*pi*f*t_a); % sinusoidal array
rng(43); % seed the random number generator
noise_a = s*randn(size(t_a)); % gaussian noise
signal_a = sin_a + noise_a; % sinusoid + noise

Now that we have an array of “data,” we’re

ready to plot.

h = figure;
p = plot(t_a,signal_a,'o-',...

'Color',[.8,.8,.8],...
'MarkerFaceColor','b',...
'MarkerEdgeColor','none',...
'MarkerSize',3);

xlabel('time (s)');
ylabel('temperature (C)');
hgsave(h,'figures/temp');
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https://en.wikipedia.org/wiki/Off-by-one_error#Fencepost_error


stats Statistics sample Estimation of sample mean and variance p. 4

Figure sample.1: temperature over time

This is something like what we might see

for continuous measurement data. Now, the

histogram.

h = figure;
histogram(signal_a,...

30, ... % number of bins
'normalization','probability'... % for PMF

);
xlabel('temperature (C)')
ylabel('probability')
hgsave(h,'figures/temp');
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Figure sample.2: a poor histogram due to unstationarity of the
signal.

This sucks because we plot a frequency

distribution to tell us about the random

variation, but this data includes the sinusoid.

Sample mean, variance, and standard

deviation

To compute the sample mean µ and standard

deviation s for each sample in the period,

we must “pick out” the nT data points that

correspond to each other. Currently, they’re

in one long 1 × n array signal_a. It is helpful
to reshape the data so it is in an nT × np
array, which each row corresponding to a new

period. This leaves the correct points aligned in

columns. It is important to note that we can do

this “folding” operation only when we know

rather precisely the period of the underlying

sinusoid. It is given in the problem that it is
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a controlled experiment variable. If we did

not know it, we would have to estimate it, too,

from the data.

signal_ar = reshape(signal_a(1:end-1)',[np,nT])';
size(signal_ar) % check size
signal_ar(1:3,1:4) % print three rows, four columns

ans =

12 21

ans =

30.2718 40.0946 40.8341 44.7662
40.1836 37.2245 49.4076 46.1137
40.0571 40.9718 46.1627 41.9145

Define the mean, variance, and standard

deviation functions as “anonmymous

functions.” We “roll our own.” These are not

as efficient or flexible as the built-in Matlab

functions mean, var, and std, which should

typically be used.

my_mean = @(vec) sum(vec)/length(vec);
my_var = @(vec) sum((vec-my_mean(vec)).^2)/...
(length(vec)-1);

my_std = @(vec) sqrt(my_var(vec));

Now the sample mean, variance, and standard

deviations can be computed. We proceed by

looping through each column of the reshaped

signal array.

mu_a = NaN*ones(1,np); % initialize mean array
var_a = NaN*ones(1,np); % initialize var array
s_a = NaN*ones(1,np); % initialize std array

for i = 1:np % for each column
mu_a(i) = my_mean(signal_ar(:,i));
var_a(i) = my_var(signal_ar(:,i));
s_a(i) = sqrt(var_a(i)); % touch of speed

end
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Composite frequency distribution

The columns represent samples. We want to

subtract the mean from each column. We use

repmat to reproduce mu_a in nT rows so it can

be easily subtracted.

signal_arz = signal_ar - repmat(mu_a,[nT,1]);
size(signal_arz) % check size
signal_arz(1:3,1:4) % print three rows, four columns

ans =

12 21

ans =

-5.0881 0.9525 -0.2909 -1.5700
4.8237 -1.9176 8.2826 -0.2225
4.6972 1.8297 5.0377 -4.4216

Now that all samples have the same mean,

we can lump them into one big bin for the

frequency distribution. There are some nice

built-in functions to do a quick reshape and fit.

% resize
signal_arzr = reshape(signal_arz,[1,nT*np]);
size(signal_arzr) % check size
% fit
pdfit_model = fitdist(signal_arzr','normal'); % fit
x_a = linspace(-15,15,100);
pdfit_a = pdf(pdfit_model,x_a);
pdf_a = normpdf(x_a,0,s); % theoretical pdf

ans =

1 252

Plot!

h = figure;
histogram(signal_arzr,...

round(s*sqrt(nT)), ... % number of bins
'normalization','probability'... % for PMF

);
hold on
plot(x_a,pdfit_a,'b-','linewidth',2); hold on
plot(x_a,pdf_a,'g--','linewidth',2);
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legend('pmf','pdf est.','pdf')
xlabel('zero-mean temperature (C)')
ylabel('probability mass/density')
hgsave(h,'figures/temp');
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Figure sample.3: PMF and estimated and theoretical PDFs.

Means comparison

The sample mean of means is simply the

following.

mu_mu = my_mean(mu_a)

mu_mu =

35.1175

The standard deviation that works as an error

bar, which should reflect how well we can

estimate the point plotted, is the standard

deviation of the means. It is difficult to

compute this directly for a nonstationary

process. We use the estimate given above

and improve upon it by using the mean

of standard deviations instead of a single

sample’s standard deviation.

s_mu = mean(s_a)/sqrt(nT)

s_mu =

1.1580

Now, for the simple plot.
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h = figure;
bar(mu_mu); hold on % gives bar
errorbar(mu_mu,s_mu,'r','linewidth',2) % error bar
ax = gca; % current axis
ax.XTickLabels = {'$\overline{\overline{X}}$'};
ax.TickLabelInterpreter = 'latex';
hgsave(h,'figures/temp');

Standard deviations comparison

The sample mean of standard deviations is

simply the following.

mu_s = my_mean(s_a)

mu_s =

4.0114

The standard deviation that works as an error

bar, which should reflect how well we can

estimate the point plotted, is the standard

deviation of the standard deviations. We can

compute this directly.

s_s = my_std(s_a)

s_s =

0.8495

Now, for the simple plot.

h = figure;
bar(mu_s); hold on % gives bar
errorbar(mu_s,s_s,'r','linewidth',2) % error bars
ax = gca; % current axis
ax.XTickLabels = {'$\overline{S_X}$'};
ax.TickLabelInterpreter = 'latex';
hgsave(h,'figures/temp');
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Figure sample.4: sample mean of sample means.
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Figure sample.5: sample standard deviation of sample means.



stats Statistics confidence Estimation of sample mean and variance p. 9

Plot a period with error bars

Plotting the data with error bars is fairly

straightforward with the built-in errorbar
function. The main question is “which

standard deviation?” Since we’re plotting the

means, it makes sense to plot the error bars as a

single sample standard deviation of the means.

h = figure;
e1 = errorbar(t_a(1:np),mu_a,s_mu*ones(1,np),'b');
hold on
t_a2 = linspace(0,1/f,101);
e2 = plot(t_a2,dc + a*sin(2*pi*f*t_a2),'r-');
xlim([t_a(1),t_a(np)])
grid on
xlabel('folded time (s)')
ylabel('temperature (C)')
legend([e1 e2],'sample mean','population mean',...
'Location','NorthEast')
hgsave(h,'figures/temp');
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Figure sample.6: sample means over a period.
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confidence

central limit theorem

stats.confidence Confidence

One really ought to have it to give a lecture

named it, but we’ll give it a try anyway.

Confidence is used in the common sense,

although we do endow it with a mathematical

definition to scare business majors, who aren’t

actually impressed, but indifferent.

Approximately: if, under some reasonable

assumptions (probabilistic model), we estimate

the probability of some event to be P%, we say

we have P% confidence in it. I mean, business

majors are all, “Supply and demand? Let’s call

that a ‘law,’ ” so I think we’re even.

So we’re back to computing probability from

distributions—probability density functions

(PDFs) and probability mass functions (PMFs).

Usually we care most about estimating the

mean of our distribution. Recall from the

previous lecture that when several samples are

taken, each with its own mean, the mean is itself

a random variable—with a mean, of course.

Meanception.

But the mean has a probability distribution of its

own. The central limit theorem has as one of its

implications that, as the sample size N gets

large, regardless of the sample distributions,

this distribution of means approaches the

Gaussian distribution.

But sometimes I always worry I’m being lied to,

so let’s check.

clear; close all; % clear kernel

Generate some data to test the central limit theorem

Data can be generated by constructing an array

using a (seeded for consistency) random

number generator. Let’s use a uniformly

distributed PDF between 0 and 1.

N = 150; % sample size (number of measurements per sample)
M = 120; % number of samples

http://ricopic.one/resources/inception.gif
http://ricopic.one/resources/mind_blown.gif
http://ricopic.one/resources/mind_blown.gif
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Figure confidence.1: raw data with colors corresponding to
samples.

n = N*M; % total number of measurements
mu_pop = 0.5; % because it's a uniform PDF between 0 and 1

rng(11); % seed the random number generator
signal_a = rand(N,M); % uniform PDF
size(signal_a) % check the size

ans =

150 120

Let’s take a look at the data by plotting the first

ten samples (columns), as shown in

Fig. confidence.1.

This is something like what we might see for

continuous measurement data. Now, the

histogram, shown in ??.

samples_to_plot = 10;
h = figure;
c = jet(samples_to_plot); % color array
for j=1:samples_to_plot

histogram(signal_a(:,j),...
30, ... % number of bins
'facecolor',c(j,:),...
'facealpha',.3,...
'normalization','probability'... % for PMF

);
hold on;

end
hold off;
xlim([-.05,1.05])
xlabel('measurement')
ylabel('probability')
hgsave(h,'figures/temp');
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Figure confidence.2: a histogram showing the approximately
uniform distribution of each sample (color).

This isn’t a great plot, but it shows roughly that

each sample is fairly uniformly distributed.

Sample statistics

Now let’s check out the sample statistics. We

want the sample mean and standard deviation

of each column. Let’s use the built-in functions

mean and std.

mu_a = mean(signal_a,1); % mean of each column
s_a = std(signal_a,1); % std of each column

Now we can compute the mean statistics, both

the mean of the mean X and the standard

deviation of the mean sX, which we don’t

strictly need for this part, but we’re curious. We

choose to use the direct estimate instead of the

sX/
√
N formula, but they should be close.

mu_mu = mean(mu_a)
s_mu = std(mu_a)

mu_mu =

0.4987

s_mu =

0.0236
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Figure confidence.3: a histogram showing the approximately
normal distribution of the means.

The truth about sample means

It’s the moment of truth. Let’s look at the

distribution, shown in Fig. confidence.3.

h = figure;
histogram(mu_a,...

'normalization','probability'... % for PMF
);
hold off;
xlabel('measurement')
ylabel('probability')
hgsave(h,'figures/temp');

This looks like a Gaussian distribution about the

mean of means, so I guess the central limit

theorem is legit.

Gaussian and probability

We already know how to compute the

probability P a value of a random variable X lies

in a certain interval from a PMF or PDF (the sum

or the integral, respectively). This means that,

for sufficiently large sample size N such that we

can assume from the central limit theorem that

the sample means xi are normally distributed,

the probability a sample mean value xi is in a

certain interval is given by integrating the

Gaussian PDF. The Gaussian PDF for random

variable Y representing the sample means is

f(y) =
1

σ
√
2π

exp −(y− µ)2

2σ2
. (1)
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Figure confidence.4: the error function.

Gaussian cumulative distribution function

where µ is the population mean and σ is the

population standard deviation.

The integral of f over some interval is the

probability a value will be in that interval.

Unfortunately, that integral is uncool. It gives

rise to the definition of the error function,

which, for the Gaussian random variable Y, is

erf(yb) =
1√
π

ˆ yb

−yb

e−t2dt. (2)

This expresses the probability a sample mean

being in the interval [−yb, yb] if Y has mean 0

and variance 1/2.

Matlab has this built-in as erf, shown in
Fig. confidence.4.

y_a = linspace(0,3,100);
h = figure;
p1 = plot(y_a,erf(y_a));
p1.LineWidth = 2;
grid on
xlabel('interval bound $y_b$','interpreter','latex')
ylabel('error function $\textrm{erf}(y_b)$',...

'interpreter','latex')
hgsave(h,'figures/temp');

We could deal directly with the error function,

but most people don’t and we’re weird enough,

as it is. Instead, people use the Gaussian

cumulative distribution function (CDF)
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Φ : R→ R, which is defined as

Φ(z) =
1

2

(
1+ erf

(
z√
2

))
(3)

and which expresses the probability of a

Gaussian random variable Z with mean 0 and

standard deviation 1 taking on a value in the

interval (−∞, z]. The Gaussian CDF and PDF are
shown in Fig. confidence.5. Values can be taken

directly from the graph, but it’s more accurate

to use the table of values in Appendix A.01.

That’s great and all, but occasionally (always)

we have Gaussian random variables with

nonzero means and nonunity standard

deviations. It turns out we can shift any

Gaussian random variable by its mean and scale

it by its standard deviation to make it have zero

mean and standard deviation. We can then use

Φ and interpret the results as being relative to

the mean and standard deviation, using phrases

like “the probability it is within two standard

deviations of its mean.” The transformed

random variable Z and its values z are

sometimes called the z-score. For a particular

value x of a random variable X, we can compute

its z-score (or value z of random variable Z) with

the formula

z =
x− µX
σX

(4)

and compute the probability of X taking on a

value within the interval, say, x ∈ [xb−, xb+]

from the table. (Sample statistics X and SX are

appropriate when population statistics are

unknown.)

For instance, compute the probability a

Gaussian random variable Xwith µX = 5 and

σX = 2.34 takes on a value within the interval

x ∈ [3, 6].

1. Compute the z-score of each endpoint of

the interval:



stats Statistics confidence Confidence p. 4

zb

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

z

G
au
ss
ia
n
P
D
F
f(
z)

Φ(zb)

f(z)

(a) the Gaussian PDF

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

interval bound zb

G
au
ss
ia
n
C
D
F
Φ
(z

b
)

(b) the Gaussian CDF

Figure confidence.5: the Gaussian PDF and CDF for z-scores.

z3 =
3− µX
σX

≈ −0.85 (5)

z6 =
6− µX
σX

≈ 0.43. (6)

2. Look up the CDF values for z3 and z6, which

are Φ(z3) = 0.1977 and Φ(z6) = 0.6664. 3. The

CDF values correspond to the probabilities x < 3

and x < 6. Therefore, to find the probability x

lies in that interval, we subtract the lower

bound probability:

P(x ∈ [3, 6]) = P(x < 6) − P(x < 3) (7)

= Φ(6) −Φ(3) (8)

≈ 0.6664− 0.1977 (9)

≈ 0.4689. (10)

So there is a 46.89% probability, and therefore

we have 46.89% confidence, that x ∈ [3, 6].
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Often we want to go the other way, estimating

the symmetric interval [xb−, xb+] for which

there is a given probability. In this case, we first

look up the z-score corresponding to a certain

probability. For concreteness, given the same

population statistics above, let’s find the

symmetric interval [xb−, xb+] over which we

have 90% confidence. From the table, we want

two, symmetric z-scores that have CDF-value

difference 0.9. Or, in maths,

Φ(zb+) −Φ(zb−) = 0.9 and zb+ = −zb−.

(11)

Due to the latter relation and the additional fact

that the Gaussian CDF has antisymmetry,

Φ(zb+) +Φ(zb−) = 1. (12)

Adding the two Φ equations,

Φ(zb+) = 1.9/2 (13)

= 0.95 (14)

and Φ(zb−) = 0.05. From the table, these

correspond (with a linear interpolation) to

zb = zb+ = −zb− ≈ 1.645. All that remains is to
solve the z-score formula for x:

x = µX + zσX. (15)

From this,

xb+ = µX + zb+σX ≈ 8.849 (16)

xb− = µX + zb−σX ≈ 1.151. (17)

and X has a 90% confidence interval

[1.151, 8.849].
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Example stats.confidence-1 re: gaussian confidence for a mean

Consider the data set generated above. What is

our 95% confidence interval in our estimate of

the mean?

Assuming we have a sufficiently large data

set, the distribution of means is approximately

Gaussian. Following the same logic as above,

we need z-score that gives an upper CDF value

of . From the table, we

obtain the zb = zb+ = −zb−, below.

z_b = 1.96;

Now we can estimate the mean using our

sample and mean statistics,

X = X± zbSX. (18)

mu_x_95 = mu_mu + [-z_b,z_b]*s_mu

mu_x_95 =

0.4526 0.5449

This is our 95% confidence interval in our

estimate of the mean.
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Student’s t-distribution

degrees of freedom

stats.student Student confidence

The central limit theorem tells us that, for large

sample size N, the distribution of the means is

Gaussian. However, for small sample size, the

Gaussian isn’t as good of an estimate. Student’s

t-distribution is superior for lower sample size

and equivalent at higher sample size.

Technically, if the population standard

deviation σX is known, even for low sample size

we should use the Gaussian distribution.

However, this rarely arises in practice, so we can

usually get away with an “always t” approach.

A way that the t-distribution accounts for low-N

is by having an entirely different distribution

for each N (seems a bit of a cheat, to me).

Actually, instead of N, it uses the degrees of

freedom ν, which is Nminus the number of

parameters required to compute the statistic.

Since the standard deviation requires only the

mean, for most of our cases, ν = N− 1.

As with the Gaussian distribution, the

t-distribution’s integral is difficult to calculate.

Typically, we will use a t-table, such as the one

given in Appendix A.02. There are three points

of note.

1. Since we are primarily concerned with

going from probability/confidence values

(e.g. P% probability/confidence) to

intervals, typically there is a column for

each probability.

2. The extra parameter ν takes over one of

the dimensions of the table because

three-dimensional tables are illegal.

3. Many of these tables are “two-sided,”

meaning their t-scores and probabilities

assume you want the symmetric

probability about the mean over the

interval [−tb, tb], where tb is your t-score

bound.
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Consider the following example.

Example stats.student-1 re: student confidence interval

Write aMatlab script to generate a data set with

200 samples and sample sizes N ∈ {10, 20, 100}

using any old distribution. Compare the

distribution of the means for the different N.

Use the sample distributions and a t-table to

compute 99% confidence intervals.

Generate the data set.

confidence = 0.99; % requirement

M = 200; % # of samples
N_a = [10,20,100]; % sample sizes

mu = 27; % population mean
sigma = 9; % population std

rng(1) % seed random number generator
data_a = mu + sigma*randn(N_a(end),M); % normal
size(data_a) % check size
data_a(1:10,1:5) % check 10 rows and five columns

ans =

100 200

ans =

21.1589 30.2894 27.8705 30.7835 28.3662
37.6305 17.1264 28.2973 24.0811 34.3486
20.1739 44.3719 43.7059 39.0699 32.2002
17.0135 32.6064 36.9030 37.9230 36.5747
19.3900 32.9156 23.7230 22.4749 19.7709
21.8460 13.8295 31.2479 16.9527 34.1876
21.9719 34.6854 19.4480 18.7014 24.1642
28.6054 32.2244 22.2873 26.9906 37.6746
25.2282 18.7326 14.5011 28.3814 27.7645
32.2780 34.1538 27.0382 18.8643 14.1752

Compute the means for different sample sizes.

mu_a = NaN*ones(length(N_a),M);
for i = 1:length(N_a)

mu_a(i,:) = mean(data_a(1:N_a(i),1:M),1);
end
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Plotting the distribution of the

means yields Figure student.1.
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Figure student.1: a histogram showing the distribution of the means
for each sample size.

It makes sense that the larger the sample size,

the smaller the spread. Aquantitativemetric for

the spread is, of course, the standard deviation

of the means for each sample size.

S_mu = std(mu_a,0,2)

S_mu =

2.8365
2.0918
1.0097

Look up t-table values or use Matlab’s tinv for
different sample sizes and 99% confidence. Use

these, the mean of means, and the standard

deviation of means to compute the 99%

confidence interval for each N.

t_a = tinv(confidence,N_a-1)
for i = 1:length(N_a)

interval = mean(mu_a(i,:)) + ...
[-1,1]*t_a(i)*S_mu(i);

disp(sprintf('interval for N = %i: ',N_a(i)))
disp(interval)

end

t_a =

2.8214 2.5395 2.3646

interval for N = 10:
19.0942 35.1000
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interval for N = 20:
21.6292 32.2535

interval for N = 100:
24.7036 29.4787

As expected, the larger the sample size, the

smaller the interval over which we have 99%

confidence in the estimate.
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joint PDF

joint PMF

stats.multivar Multivariate probability and correlation

Thus far, we have considered probability

density and mass functions (PDFs and PMFs) of

only one random variable. But, of course, often

we measure multiple random variables

X1, X2, . . . , Xn during a single event, meaning a

measurement consists of determining values

x1, x2, . . . , xn of these random variables.

We can consider an n-tuple of continuous

random variables to form a sample space

Ω = Rn on which a multivariate function

f : Rn → R, called the joint PDF assigns a
probability density to each outcome x ∈ Rn. The

joint PDF must be greater than or equal to zero

for all x ∈ Rn, the multiple integral over Ωmust

be unity, and the multiple integral over a subset

of the sample space A ⊂ Ω is the probability of

the event A.

We can consider an n-tuple of discrete random

variables to form a sample space Nn
0 on which a

multivariate function f : Nn
0 → R, called the joint

PMF assigns a probability to each outcome

x ∈ Nn
0 . The joint PMF must be greater than or

equal to zero for all x ∈ Nn
0 , the multiple sum

over Ωmust be unity, and the multiple sum

over a subset of the sample space A ⊂ Ω is the

probability of the event A.

Example stats.multivar-1 re: bivariate gaussian pdf

Let’s visualize multivariate PDFs by plotting

a bivariate gaussian using Matlab’s mvnpdf
function.

mu = [10,20]; % means
Sigma = [1,0;0,.2]; % cov ... we'll talk about this
x1_a = linspace(...

mu(1)-5*sqrt(Sigma(1,1)),...
mu(1)+5*sqrt(Sigma(1,1)),...
30);

x2_a = linspace(...
mu(2)-5*sqrt(Sigma(2,2)),...
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marginal PDF

mu(2)+5*sqrt(Sigma(2,2)),...
30);

[X1,X2] = meshgrid(x1_a,x2_a);
f = mvnpdf([X1(:) X2(:)],mu,Sigma);
f = reshape(f,length(x2_a),length(x1_a));

h = figure;
p = surf(x1_a,x2_a,f);
xlabel('$x_1$','interpreter','latex')
ylabel('$x_2$','interpreter','latex')
zlabel('$f(x_1,x_2)$','interpreter','latex')
shading interp
hgsave(h,'figures/temp');

The result is Fig. multivar.1. Note

how the means and standard

deviations affect the distribution.
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Figure multivar.1: two-variable gaussian PDF.

Marginal probability

The marginal PDF of a multivariate PDF is the

PDF of some subspace of Ω after one or more

variables have been “integrated out,” such that

a fewer number of random variables remain. Of

course, these marginal PDFs must have the

same properties of any PDF, such as integrating

to unity.

Example stats.multivar-2 re: bivariate gaussian marginal probability

Let’s demonstrate this by numerically

integrating over x2 in the bivariate Gaussian,

above.
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machine learning

artificial intelligence

covariance

Continuing from where we left off, let’s

integrate.

f1 = trapz(x2_a,f',2); % trapezoidal integration

Plotting this yields Fig. multivar.2.

h = figure;
p = plot(x1_a,f1);
p.LineWidth = 2;
xlabel('$x_1$','interpreter','latex')
ylabel(...
'$g(x_1)=\int_{-\infty}^\infty f(x_1,x_2) d x_2$',...
'interpreter','latex'...
)
hgsave(h,'figures/temp');
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Figure multivar.2: marginal Gaussian PDF g(x1).

We should probably verify that this integrates

to one.

disp(['integral over x_1 = ',...
sprintf('%0.7f',trapz(x1_a,f1))] ...

)

integral over x_1 = 0.9999986

Not bad.

Covariance

Very often, especially in machine learning or

artificial intelligence applications, the question

about two random variables X and Y is: how do

they co-vary? That is what is their covariance,
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correlation

sample covariance

covariance matrix

defined as

Cov [X, Y] ≡ E ((X− µX)(Y − µY))

= E(XY) − µXµY .

Note that when X = Y, the covariance is just the

variance. When a covariance is large and

positive, it is an indication that the random

variables are strongly correlated. When it is

large and negative, they are strongly

anti-correlated. Zero covariance means the

variables are uncorrelated. In fact, correlation is

defined as

Cor [X, Y] = Cov [X, Y]√
Var [X]Var [Y]

.

This is essentially the covariance “normalized”

to the interval [−1, 1].

Sample covariance

As with the other statistics we’ve considered,

covariance can be estimated from measurement.

The estimate, called the sample covariance qXY ,

of random variables X and Y with sample size N

is given by

qXY =
1

N− 1

N∑
i=1

(xi − X)(yi − Y).

Multivariate covariance

With n random variables Xi, one can compute

the covariance of each pair. It is common

practice to define an n× nmatrix of covariances
called the covariance matrix Σ such that each

pair’s covariance

Cov
[
Xi, Xj

]
(1)

appears in its row-column combination (making

it symmetric), as shown below.

Σ =


Cov [X1, X1] Cov [X1, X2] · · · Cov [X1, Xn]

Cov [X2, X1] Cov [X2, X2] Cov [X2, Xn]
...

. . .
...

Cov [Xn, X1] Cov [Xn, X2] · · · Cov [Xn, Xn]
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sample covariance matrixThe multivariate sample covariance matrix Q is

the same as above, but with sample covariances

qXiXj
.

Both covariance matrices have correlation

analogs.

Example stats.multivar-3 re: car data sample covariance and

correlation

Let’s use a built-in multivariate data set that

describes different features of cars, listed below.

d = load('carsmall.mat') % this is a "struct"

Let’s compute the sample covariance and

correlation matrices.

variables = {...
'MPG','Cylinders',...
'Displacement','Horsepower',...
'Weight','Acceleration',...
'Model_Year'};

n = length(variables);
m = length(d.MPG);

data = NaN*ones(m,n); % preallocate
for i = 1:n

data(:,i) = d.(variables{i});
end

cov_d = nancov(data); % sample covariance
cor_d = corrcov(cov_d) % sample correlation

This is highly correlated/anticorrelated

data! Let’s plot each variable versus each

other variable to see the correlations of each.

We use a red-to-blue colormap to contrast

anticorrelation and correlation. Purple, then, is

uncorrelated.

The following builds the red-to-blue colormap.

n_colors = 10;
cmap_rb = NaN*ones(n_colors,3);
for i = 1:n_colors
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a = i/n_colors;
cmap_rb(i,:) = (1-a)*[1,0,0]+a*[0,0,1];

end

h = figure;
for i = 1:n

for j = 1:n
subplot(n,n,sub2ind([n,n],j,i))
p = plot(...
d.(variables{i}),...
d.(variables{j}),'.'...

); hold on
this_color = cmap_rb(...
round((cor_d(i,j)+1)*(n_colors-1)/2),...
:...

);
p.MarkerFaceColor = this_color;
p.MarkerEdgeColor = this_color;

end
end
hgsave(h,'figures/temp');

Figure multivar.3: car data correlation.

Conditional probability and dependence

Independent variables are uncorrelated.

However, uncorrelated variables may or may

not be independent. Therefore, we cannot use

correlation alone as a test for independence. For
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instance, for random variables X and Y, where X

has some even distribution and Y = X2, clearly

the variables are dependent. However, the are

also uncorrelated (due to symmetry).

Example stats.multivar-4 re: car data sample covariance and

correlation

Using a uniform distribution U(−1, 1), show

that X and Y are uncorrelated (but dependent)

with Y = X2 with some sampling. We compute

the correlation for different sample sizes.

N_a = round(linspace(10,500,100));
qc_a = NaN*ones(size(N_a));
rng(6)
x_a = -1 + 2.*rand(max(N_a),1);
y_a = x_a.^2;
for i = 1:length(N_a)

% should write incremental algorithm
% but lazy
q = cov(x_a(1:N_a(i)),y_a(1:N_a(i)));
qc = corrcov(q);
qc_a(i) = qc(2,1); % "cross" correlation

end

The absolute values of the correlations are

shown in Fig. multivar.4. Note that we should

probably average several such curves to

estimate how the correlation would drop off

with N, but the single curve describes our

understanding that the correlation, in fact,

approaches zero in the large-sample limit.

h = figure;
p = plot(N_a,abs(qc_a));
p.LineWidth = 2;
xlabel('sample size $N$','interpreter','latex')
ylabel(...
'absolute sample correlation',...
'interpreter','latex'...

)
hgsave(h,'figures/temp');
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Figure multivar.4: absolute value of the sample correlation
between X ∼ U(−1, 1) and Y = X2 for different sample size N. In
the limit, the population correlation should approach zero and yet X and Y are
not independent.
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Figure regression.1: force-displacement data.

stats.regression Regression

Suppose we have a sample with two

measurands: (1) the force F through a spring and

(2) its displacement X (not from equilibrium).

We would like to determine an analytic function

that relates the variables, perhaps for prediction

of the force given another displacement.

There is some variation in the measurement.

Let’s say the following is the sample.

X_a = 1e-3*[10,21,30,41,49,50,61,71,80,92,100]'; % m
F_a = [50.1,50.4,53.2,55.9,57.2,59.9,...

61.0,63.9,67.0,67.9,70.3]'; % N

Let’s take a look at the data. The result is

Figure regression.1.

h = figure;
p = plot(X_a*1e3,F_a,'.b','MarkerSize',15);
xlabel('$X$ (mm)','interpreter','latex')
ylabel('$F$ (N)','interpreter','latex')
xlim([0,max(X_a*1e3)])
grid on
hgsave(h,'figures/temp');

How might we find an analytic function that

agrees with the data? Broadly, our strategy will

be to assume a general form of a function and

use the data to set the parameters in the
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function such that the difference between the

data and the function is minimal.

Let y be the analytic function that we would like

to fit to the data. Let yi denote the value of

y(xi), where xi is the ith value of the random

variable X from the sample. Then we want to

minimize the differences between the force

measurements Fi and yi.

From calculus, recall that we can minimize a

function by differentiating it and solving for the

zero-crossings (which correspond to local

maxima or minima).

First, we need such a function to minimize.

Perhaps the simplest, effective function D is

constructed by squaring and summing the

differences we want to minimize, for sample

size N:

D(xi) =

N∑
i=1

(Fi − yi)
2 (1)

(recall that yi = y(xi), which makes D a function

of x).

Now the form of ymust be chosen. We consider

onlymth-order polynomial functions y, but

others can be used in a similar manner:

y(x) = a0 + a1x+ a2x
2 + · · ·+ amxm. (2)

If we treat D as a function of the polynomial

coefficients aj, i.e.

D(a0, a1, · · · , am), (3)

and minimize D for each value of xi, we must

take the partial derivatives of Dwith respect to

each aj and set each equal to zero:

∂D

∂a0
= 0,

∂D

∂a1
= 0, · · · , ∂D

∂am
= 0.

This gives us N equations andm+ 1 unknowns
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aj. Writing the system in matrix form,

1 x1 x21 · · · xm1

1 x2 x22 · · · xm2

1 x3 x23 · · · xm3
...

...
...

. . .
...

1 xN x2N · · · xmN


︸ ︷︷ ︸

AN×(m+1)



a0

a1

a2
...

am


︸ ︷︷ ︸
a(m+1)×1

=



F1

F2

F3
...

FN


︸ ︷︷ ︸
bN×1

. (4)

Typically N > m and this is an overdetermined

system. Therefore, we usually can’t solve by

taking A−1 because A doesn’t have an inverse!

Instead, we either find the Moore-Penrose

pseudo-inverse A† and have a = A†b as the

solution, which is inefficient—or we can

approximate bwith an algorithm such as that

used by Matlab’s \ operator. In the latter case,
a_a = A\b_a.

Example stats.regression-1 re: regression

Use Matlab’s \ operator to find a good

polynomial fit for the sample. There’s the

sometimes-difficult question “what order

should we fit?” Let’s try out several and see

what the squared-differences function D gives.

N = length(X_a); % sample size
m_a = 2:N; % all the order up to N

A = NaN*ones(length(m_a),max(m_a),N);
for k = 1:length(m_a) % each order

for j = 1:N % each measurement
for i = 1:( m_a(k) + 1 ) % each coef

A(k,j,i) = X_a(j)^(i-1);
end

end
end
disp(squeeze(A(2,:,1:5)))

1.0000 0.0100 0.0001 0.0000 NaN
1.0000 0.0210 0.0004 0.0000 NaN
1.0000 0.0300 0.0009 0.0000 NaN
1.0000 0.0410 0.0017 0.0001 NaN
1.0000 0.0490 0.0024 0.0001 NaN
1.0000 0.0500 0.0025 0.0001 NaN



stats Statistics regression Regression p. 4

1.0000 0.0610 0.0037 0.0002 NaN
1.0000 0.0710 0.0050 0.0004 NaN
1.0000 0.0800 0.0064 0.0005 NaN
1.0000 0.0920 0.0085 0.0008 NaN
1.0000 0.1000 0.0100 0.0010 NaN

We’ve printed the first five columns of the third-

order matrix, which only has four columns, so

NaNs fill in the rest.
Now we can use the \ operator to solve for the
coefficients.

a = NaN*ones(length(m_a),max(m_a));

warning('off','all')
for i = 1:length(m_a)

A_now = squeeze(A(i,:,1:m_a(i)));
a(i,1:m_a(i)) = (A_now(:,1:m_a(i))\F_a)';

end
warning('on','all')

n_plot = 100;
x_plot = linspace(min(X_a),max(X_a),n_plot);
y = NaN*ones(n_plot,length(m_a)); % preallocate
for i = 1:length(m_a)

y(:,i) = polyval(fliplr(a(i,1:m_a(i))),x_plot);
end

h = figure;
for i = 1:2:length(m_a)-1

p = plot(x_plot*1e3,y(:,i),'linewidth',1.5);
hold on
p.DisplayName = sprintf(...

'order: %i ',...
(m_a(i)-1)...

);
end
p = plot(X_a*1e3,F_a,'.b','MarkerSize',15);
xlabel('$X$ (mm)','interpreter','latex')
ylabel('$F$ (N)','interpreter','latex')
p.DisplayName = 'sample';
legend('show','location','southeast')
grid on
hgsave(h,'figures/temp');
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Figure regression.2: force-displacement data with curve fits.
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/20 p.

4. JSON is a simple and common programming language-independent
data format. For parsing it with Matlab, see jsondecode here:

mathworks.com/help/matlab/ref/jsondecode.html
For parsing it with Python, see the module json here:

docs.python.org/library/json

5. Consider using a z- or t-score inverse CDF lookup function like t.ppf
from scipy.stats.

/20 p.

stats.exe Exercises for Chapter stats

Exercise stats.brew

You need to know the duration of time a certain

stage of a brewing process takes. You set up an

automated test environment that repeats the test

100 times, recorded in the following JSON4 data

file:

http://ricopic.one/mathematical_foundations/

source/brew.json

Perform the following analysis.

a. Download and parse the JSON file (it

contains a single array).

b. Estimate the duration of the process from

the sample.

c. Choose and justify an assumed probability

density function for the random variable

duration.

d. Use this PDF model to compute a 99

percent confidence interval for your

duration estimate.

e. Compute your duration confidence

interval for the range of confidence values

[85, 99.99] percent.5

f. Plot the confidence intervals over the

range of confidence in said intervals.

Exercise stats.laboritorium

Use linear regression techniques to find the

values of a, b, c, and d, in a cubic function of the

form,

f(x) = ax3 + bx2 + cx+ d,

using the data below.

http://mathworks.com/help/matlab/ref/jsondecode.html
http://docs.python.org/library/json
http://ricopic.one/mathematical_foundations/source/brew.json
http://ricopic.one/mathematical_foundations/source/brew.json
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x f(x)

-2.0 -4.7

-1.5 -1.9

-1.0 1.5

-0.5 1.5

0.0 1.4

0.6 0.3

1.1 -1.5

1.6 0.0

2.1 0.6

2.6 4.2

Exercise stats.robotization

Use linear regression techniques to find the

value of τ in the function,

f(t) = 1− e
−t2

τ

Using the data below.

t f(t)

0.1 0.02

0.6 0.34

1.1 0.74

1.6 0.94

2.1 0.98



calculus

limit

series

derivative

integral

vector calculus

vecs

Vector calculus

A great many physical situations of interest to

engineers can be described by calculus. It can

describe how quantities continuously change

over (say) time and gives tools for computing

other quantities. We assume familiarity with the

fundamentals of calculus: limit, series,

derivative, and integral. From these and a basic

grasp of vectors, we will outline some of the

highlights of vector calculus. Vector calculus is

particularly useful for describing the physics of,

for instance, the following.

mechanics of particles wherein is studied

the motion of particles and the forcing

causes thereof

rigid-body mechanics wherein is studied

the motion, rotational and translational,

and its forcing causes, of bodies

considered rigid (undeformable)

solid mechanics wherein is studied the

motion and deformation, and their forcing

causes, of continuous solid bodies (those

that retain a specific resting shape)

fluid mechanics wherein is studied the

motion and its forcing causes of fluids

(liquids, gases, plasmas)

heat transfer wherein is studied the

movement of thermal energy through and

among bodies

electromagnetism wherein is studied the

motion and its forcing causes of

electrically charged particles
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complex analysis

1. For an introduction to complex analysis, see Kreyszig. (Kreyszig,
Advanced Engineering Mathematics, Part D)

2. ibidem, Chapters 9, 10.

3. H.M. Schey. Div, Grad, Curl, andAll that: An Informal Text on Vector
Calculus. W.W. Norton, 2005. ISBN: 9780393925166.

euclidean vector space

bases

components

basis vectors

invariant

coordinate system

Cartesian coordinates

manifolds

non-euclidean geometry

parallel postulate

differential geometry

4. John M. Lee. Introduction to Smooth Manifolds. second. volume 218.
Graduate Texts in Mathematics. Springer, 2012.

This last example was in fact very influential in

the original development of both vector calculus

and complex analysis.1 It is not an exaggeration

to say that the topics above comprise the

majority of physical topics of interest in

engineering.

A good introduction to vector calculus is given

by Kreyszig.2 Perhaps the most famous and

enjoyable treatment is given by Schey3 in the

adorably titled Div, Grad, Curl and All that.

It is important to note that in much of what

follows, we will describe (typically the

three-dimensional space of our lived experience)

as a euclidean vector space: an n-dimensional

vector space isomorphic to Rn. As we know

from linear algebra, any vector v ∈ Rn can be

expressed in any number of bases. That is, the

vector v is a basis-free object with multiple basis

representations. The components and basis

vectors of a vector change with basis changes,

but the vector itself is invariant. A coordinate

system is in fact just a basis. We are most

familiar, of course, with Cartesian coordinates,

which is the specific orthonormal basis b for Rn:

b1 =


1

0
...

0

 , b2 =


0

1
...

0

 , · · · , bn =


0

0
...

1

 . (1)

Manifolds are spaces that appear locally as Rn,

but can be globally rather different and can

describe non-euclidean geometry wherein

euclidean geometry’s parallel postulate is

invalid. Calculus on manifolds is the focus of

differential geometry, a subset of which we can

consider our current study. A motivation for

further study of differential geometry is that it is

very convenient when dealing with advanced

applications of mechanics, such as rigid-body

mechanics of robots and vehicles. A very nice

mathematical introduction is given by Lee4 and
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5. Francesco Bullo and Andrew D. Lewis. Geometric control
of mechanical systems: modeling, analysis, and design for simple
mechanical control systems. byeditorJ.E. Marsden, L. Sirovich and M.
Golubitsky. Springer, 2005.

Bullo and Lewis5 give a compact presentation in

the context of robotics.

Vector fields have several important properties

of interest we’ll explore in this chapter. Our

goal is to gain an intuition of these properties

and be able to perform basic calculation.
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surface integral

flux

6. Schey, Div, Grad, Curl, and All that: An Informal Text on Vector
Calculus, pp. 21-30.

7. Kreyszig, Advanced Engineering Mathematics, § 10.6.

source

sink

incompressible

vecs.div Divergence, surface integrals, and flux

Flux and surface integrals

Consider a surface S. Let

r(u, v) = [x(u, v), y(u, v), z(u, v)] be a parametric

position vector on a Euclidean vector space R3.

Furthermore, let F : R3 → R3 be a vector-valued

function of r and let n be a unit-normal vector

on a surface S. The surface integral¨

S

F · ndS (1)

which integrates the normal of F over the

surface. We call this quantity the flux of F out of

the surface S. This terminology comes from

fluid flow, for which the flux is the mass flow

rate out of S. In general, the flux is a measure of

a quantity (or field) passing through a surface.

For more on computing surface integrals, see

Schey6 and Kreyszig.7

Continuity

Consider the flux out of a surface S that encloses

a volume ∆V , divided by that volume:

1

∆V

¨

S

F · ndS. (2)

This gives a measure of flux per unit volume for

a volume of space. Consider its physical

meaning when we interpret this as fluid flow:

all fluid that enters the volume is negative flux

and all that leaves is positive. If physical

conditions are such that we expect no fluid to

enter or exit the volume via what is called a

source or a sink, and if we assume the density of

the fluid is uniform (this is called an

incompressible fluid), then all the fluid that

enters the volume must exit and we get

1

∆V

¨

S

F · ndS = 0. (3)
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continuity equation

divergence

This is called a continuity equation, although

typically this name is given to equations of the

form in the next section. This equation is one of

the governing equations in continuum

mechanics.

Divergence

Let’s take the flux-per-volume as the volume

∆V → 0 we obtain the following.

Equation 4 divergence: integral

form

lim
∆V→0

1

∆V

¨

S

F · ndS.

This is called the divergence of F and is defined

at each point in R3 by taking the volume to zero

about it. It is given the shorthand div F.

What interpretation can we give this quantity?

It is a measure of the vector field’s flux outward

through a surface containing an infinitesimal

volume. When we consider a fluid, a positive

divergence is a local decrease in density and a

negative divergence is a density increase. If the

fluid is incompressible and has no sources or

sinks, we can write the continuity equation

div F = 0. (5)

In the Cartesian basis, it can be shown that the

divergence is easily computed from the field

F = Fxî+ Fyĵ+ Fzk̂ (6)

as follows.

Equation 7 divergence: differential

form

div F = ∂xFx + ∂yFy + ∂zFz
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Exploring divergence

Divergence is perhaps best explored by

considering it for a vector field in R2. Such a

field F = Fxî+ Fyĵ can be represented as a

“quiver” plot. If we overlay the quiver plot over

a “color density” plot representing div F, we can

increase our intuition about the divergence.

The following was generated from a Jupyter

notebook with the following filename and

kernel.

notebook filename: div_surface_integrals_flux.ipynb
notebook kernel: python3

First, load some Python packages.

from sympy import *
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import LogLocator
from matplotlib.colors import *
from sympy.utilities.lambdify import lambdify
from IPython.display import display, Markdown, Latex

Now we define some symbolic variables and

functions.

var('x,y')
F_x = Function('F_x')(x,y)
F_y = Function('F_y')(x,y)

Rather than repeat code, let’s write a single

function quiver_plotter_2D to make several of
these plots.

def quiver_plotter_2D(
field={F_x:x*y,F_y:x*y},
grid_width=3,
grid_decimate_x=8,
grid_decimate_y=8,
norm=Normalize(),
density_operation='div',
print_density=True,

):
# define symbolics
var('x,y')
F_x = Function('F_x')(x,y)
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F_y = Function('F_y')(x,y)
field_sub = field

# compute density
if density_operation is 'div':
den = F_x.diff(x) + F_y.diff(y)

elif density_operation is 'curl':
# in the k direction
den = F_y.diff(x) - F_x.diff(y)

else:
error('div and curl are the only density operators')

den_simp = den.subs(
field_sub

).doit().simplify()
if den_simp.is_constant():
print(

'Warning: density operator is constant (no density plot)'
)

if print_density:
print(f'The {density_operation} is:')
display(den_simp)

# lambdify for numerics
F_x_sub = F_x.subs(field_sub)
F_y_sub = F_y.subs(field_sub)
F_x_fun = lambdify((x,y),F_x.subs(field_sub),'numpy')
F_y_fun = lambdify((x,y),F_y.subs(field_sub),'numpy')
if F_x_sub.is_constant:
F_x_fun1 = F_x_fun # dummy
F_x_fun = lambda x,y: F_x_fun1(x,y)*np.ones(x.shape)

if F_y_sub.is_constant:
F_y_fun1 = F_y_fun # dummy
F_y_fun = lambda x,y: F_y_fun1(x,y)*np.ones(x.shape)

if not den_simp.is_constant():
den_fun = lambdify((x,y), den_simp,'numpy')

# create grid
w = grid_width
Y, X = np.mgrid[-w:w:100j, -w:w:100j]

# evaluate numerically
F_x_num = F_x_fun(X,Y)
F_y_num = F_y_fun(X,Y)
if not den_simp.is_constant():
den_num = den_fun(X,Y)

# plot
p = plt.figure()
# colormesh
if not den_simp.is_constant():
cmap = plt.get_cmap('PiYG')
im = plt.pcolormesh(X,Y,den_num,cmap=cmap,norm=norm)
plt.colorbar()

# Abs quiver
dx = grid_decimate_y
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Figure div.1: png

dy = grid_decimate_x
plt.quiver(
X[::dx,::dy],Y[::dx,::dy],
F_x_num[::dx,::dy],F_y_num[::dx,::dy],
units='xy', scale=10

);
plt.title(f'F(x,y) = [{F_x.subs(field_sub)},{F_y.subs(field_sub)}]')
return p

Note that while we’re at it, we included a hook

for density plots of the curl of F, and we’ll return

to this in a later lecture.

Let’s inspect several cases.

p = quiver_plotter_2D(
field={F_x:x**2,F_y:y**2}

)

The div is:

2x+ 2y

p = quiver_plotter_2D(
field={F_x:x*y,F_y:x*y}

)
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Figure div.2: png

The div is:

x+ y

p = quiver_plotter_2D(
field={F_x:x**2+y**2,F_y:x**2+y**2}

)

The div is:

2x+ 2y

p = quiver_plotter_2D(
field={F_x:x**2/sqrt(x**2+y**2),F_y:y**2/sqrt(x**2+y**2)},
norm=SymLogNorm(linthresh=.3, linscale=.3)

)

The div is:

−x3 − y3 + 2 (x+ y)
(
x2 + y2

)
(x2 + y2)

3
2
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Figure div.3: png

Figure div.4: png



vecs Vector calculus curl Curl, line integrals, and circulation p. 1

line integral

8. Schey, Div, Grad, Curl, and All that: An Informal Text on Vector
Calculus, pp. 63-74.

9. Kreyszig, Advanced Engineering Mathematics, § 10.1, 10.2.

force

work

circulation

the law of circulation

vecs.curl Curl, line integrals, and circulation

Line integrals

Consider a curve C in a Euclidean vector space

R3. Let r(t) = [x(t), y(t), z(t)] be a parametric

representation of C. Furthermore, let

F : R3 → R3 be a vector-valued function of r and

let r ′(t) be the tangent vector. The line integral is

ˆ

C

F(r(t)) · r ′(t)dt (1)

which integrates F along the curve. For more on

computing line integrals, see Schey8 and

Kreyszig.9

If F is a force being applied to an object moving

along the curve C, the line integral is the work

done by the force. More generally, the line

integral integrates F along the tangent of C.

Circulation

Consider the line integral over a closed curve C,

denoted by

˛

C

F(r(t)) · r ′(t)dt. (2)

We call this quantity the circulation of F around

C.

For certain vector-valued functions F, the

circulation is zero for every curve. In these cases

(static electric fields, for instance), this is

sometimes called the the law of circulation.

Curl

Consider the division of the circulation around

a curve in R3 by the surface area it encloses ∆S,

1

∆S

˛

C

F(r(t)) · r ′(t)dt. (3)
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curl

curl

vorticity

10. A region is simply connected if every curve in it can shrink to a point
without leaving the region. An example of a region that is not simply
connected is the surface of a toroid.

In a manner analogous to the operation that

gaves us the divergence, let’s consider shrinking

this curve to a point and the surface area to zero,

lim
∆S→0

1

∆S

˛

C

F(r(t)) · r ′(t)dt. (4)

We call this quantity the “scalar” curl of F at

each point in R3 in the direction normal to ∆S as

it shrinks to zero. Taking three (or n for Rn)

“scalar” curls in indepedent normal directions

(enough to span the vector space), we obtain the

curl proper, which is a vector-valued function

curl : R3 → R3.

The curl is coordinate-independent. In cartesian

coordinates, it can be shown to be equivalent to

the following.

Equation 5 curl: differential form,

cartesian coordinates

curl F =
[
∂yFz − ∂zFy ∂zFx − ∂xFz ∂xFy − ∂yFx

]>
But what does the curl of F represent? It

quantifies the local rotation of F about each

point. If F represents a fluid’s velocity, curl F is
the local rotation of the fluid about each point

and it is called the vorticity.

Zero curl, circulation, and path independence

Circulation

It can be shown that if the circulation of F on all

curves is zero, then in each direction n and at

every point curl F = 0 (i.e. n · curl F = 0).

Conversely, for curl F = 0 in a simply connected

region10, F has zero circulation.

Succinctly, informally, and without the requisite
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zero curl

zero circulation path independence

connectedness and

Figure curl.1: an implication graph relating zero curl, zero circulation,
path independence, and connectedness. Green edges represent implication (a
implies b) and black edges represent logical conjunctions.

path independence

qualifiers above,

zero circulation⇒ zero curl

(6)

zero curl + simply connected region⇒ zero circulation.

(7)

Path independence

It can be shown that if the path integral of F on

all curves between any two points is

path-independent, then in each direction n and

at every point curl F = 0 (i.e. n · curl F = 0).

Conversely, for curl F = 0 in a simply connected

region, all line integrals are independent of path.

Succinctly, informally, and without the requisite

qualifiers above,

path independence⇒ zero curl

(8)

zero curl + simply connected region⇒ path independence.

(9)

… and how they relate

It is also true that

path independence⇔ zero circulation. (10)

So, putting it all together, we get Fig. curl.1.
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Exploring curl

Curl is perhaps best explored by considering it

for a vector field in R2. Such a field in cartesian

coordinates F = Fxî+ Fyĵ has curl

curl F =
[
∂y0− ∂zFy ∂zFx − ∂x0 ∂xFy − ∂yFx

]>
=

[
0− 0 0− 0 ∂xFy − ∂yFx

]>
=

[
0 0 ∂xFy − ∂yFx

]>
. (11)

That is, curl F = (∂xFy − ∂yFx)k̂ and the only

nonzero component is normal to the xy-plane. If

we overlay a quiver plot of F over a “color

density” plot representing the k̂-component of

curl F, we can increase our intuition about the
curl.

The following was generated from a Jupyter

notebook with the following filename and

kernel.

notebook filename: curl-and-line-integrals.ipynb
notebook kernel: python3

First, load some Python packages.

from sympy import *
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import LogLocator
from matplotlib.colors import *
from sympy.utilities.lambdify import lambdify
from IPython.display import display, Markdown, Latex

Now we define some symbolic variables and

functions.

var('x,y')
F_x = Function('F_x')(x,y)
F_y = Function('F_y')(x,y)

We use the same function defined in

Lec. vecs.div, quiver_plotter_2D, to make
several of these plots.

Let’s inspect several cases.



vecs Vector calculus curl Curl, line integrals, and circulation p. 3

Figure curl.2: png

p = quiver_plotter_2D(
field={F_x:0,F_y:cos(2*pi*x)},
density_operation='curl',
grid_decimate_x=2,
grid_decimate_y=10,
grid_width=1

)

The curl is:

−2π sin (2πx)

p = quiver_plotter_2D(
field={F_x:0,F_y:x**2},
density_operation='curl',
grid_decimate_x=2,
grid_decimate_y=20,

)

The curl is:

2x

p = quiver_plotter_2D(
field={F_x:y**2,F_y:x**2},
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Figure curl.3: png

density_operation='curl',
grid_decimate_x=2,
grid_decimate_y=20,

)

The curl is:

2x− 2y

p = quiver_plotter_2D(
field={F_x:-y,F_y:x},
density_operation='curl',
grid_decimate_x=6,
grid_decimate_y=6,

)

Warning: density operator is constant (no density
plot)↪→

The curl is:

2
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Figure curl.4: png

Figure curl.5: png
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gradient

direction

magnitude

principle of least action

vecs.grad Gradient

Gradient

The gradient grad of a scalar-valued function
f : R3 → R is a vector field F : R3 → R3; that is,

grad f is a vector-valued function on R3. The

gradient’s local direction and magnitude are

those of the local maximum rate of increase of f.

This makes it useful in optimization (e.g. in the

method of gradient descent).

In classical mechanics, quantum mechanics,

relativity, string theory, thermodynamics, and

continuum mechanics (and elsewhere) the

principle of least action is taken as fundamental

(Richard P. Feynman, Robert B. Leighton and

Matthew Sands. The Feynman Lectures on

Physics. New Millennium. Perseus Basic Books,

2010). This principle tells us that nature’s laws

quite frequently seem to be derivable by

assuming a certain quantity—called action—is

minimized. Considering, then, that the gradient

supplies us with a tool for optimizing functions,

it is unsurprising that the gradient enters into

the equations of motion of many physical

quantities.

The gradient is coordinate-independent, but its

coordinate-free definitions don’t add much to

our intuition. In cartesian coordinates, it can be

shown to be equivalent to the following.

Equation 1 gradient: cartesian

coordinates

grad f =
[
∂xf ∂yf ∂zf

]>

Vector fields from gradients are special

Although all gradients are vector fields, not all

vector fields are gradients. That is, given a

vector field F, it may or may not be equal to the
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gradience

zero curl

zero circulation path independence

connectedness and

Figure grad.1: an implication graph relating gradience, zero curl,
zero circulation, path independence, and connectedness. Green edges represent
implication (a implies b) and black edges represent logical conjunctions.

gradience

11. This is nonstandard terminology, but we’re bold.

potentials

gradient of any scalar-valued function f. Let’s

say of a vector field that is a gradient that it has

gradience.11 Those vector fields that are

gradients have special properties. Surprisingly,

those properties are connected to path

independence and curl. It can be shown that iff

a field is a gradient, line integrals of the field are

path independent. That is, for a vector field,

gradience⇔ path independence. (2)

Considering what we know from Lec. vecs.curl

about path independence we can expand

Fig. curl.1 to obtain Fig. grad.1.

One implication is that gradients have zero curl!

Many important fields that describe physical

interactions (e.g. static electric fields, Newtonian

gravitational fields) are gradients of scalar fields

called potentials.

Exploring gradient

Gradient is perhaps best explored by

considering it for a scalar field on R2. Such a

field in cartesian coordinates f(x, y) has gradient

grad f =
[
∂xf ∂yf

]>
(3)
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That is, grad f = F = ∂xf î+ ∂yf ĵ. If we overlay a

quiver plot of F over a “color density” plot

representing the f, we can increase our intuition

about the gradient.

The following was generated from a Jupyter

notebook with the following filename and

kernel.

notebook filename: grad.ipynb
notebook kernel: python3

First, load some Python packages.

from sympy import *
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import LogLocator
from matplotlib.colors import *
from sympy.utilities.lambdify import lambdify
from IPython.display import display, Markdown, Latex

Now we define some symbolic variables and

functions.

var('x,y')

(x, y)

Rather than repeat code, let’s write a single

function grad_plotter_2D to make several of
these plots.

Let’s inspect several cases. While considering

the following plots, remember that they all have

zero curl!

p = grad_plotter_2D(
field=x,

)

The gradient is:[
1 0

]
p = grad_plotter_2D(

field=x+y,
)
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Figure grad.2: png

The gradient is:[
1 1

]
p = grad_plotter_2D(

field=1,
)

Warning: field is constant (no plot)
The gradient is:[
0 0

]
Gravitational potential

Gravitational potentials have the form of

1/distance. Let’s check out the gradient.

p = grad_plotter_2D(
field=1/sqrt(x**2+y**2),
norm=SymLogNorm(linthresh=.3, linscale=.3),
mask=True,

)
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Figure grad.3: png

conic section

parabolic fields

eliptic fields

The gradient is:[
− x

(x2+y2)
3
2

− y

(x2+y2)
3
2

]

Conic section fields

Gradients of conic section fields can be explored.

The following is called a parabolic field.

p = grad_plotter_2D(
field=x**2,

)

The gradient is:[
2x 0

]
The following are called eliptic fields.

p = grad_plotter_2D(
field=x**2+y**2,

)

The gradient is:
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Figure grad.4: png

Figure grad.5: png
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Figure grad.6: png

hyperbolic fields

[
2x 2y

]
p = grad_plotter_2D(

field=-x**2-y**2,
)

The gradient is:[
−2x −2y

]
The following is called a hyperbolic field.

p = grad_plotter_2D(
field=x**2-y**2,

)

The gradient is:[
2x −2y

]
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Figure grad.7: png

Figure grad.8: png
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divergence theorem

triple integral

orientable

12. A surface is orientable if a consistent normal direction can be defined.
Most surfaces are orientable, but some, notably the Möbius strip, cannot
be. See Kreyszig (Kreyszig, Advanced Engineering Mathematics, § 10.6)
for more.

13. ibidem, § 10.7.

14. Schey, Div, Grad, Curl, and All that: An Informal Text on Vector
Calculus, pp. 45-52.

continuity equation

15. ibidem, pp. 49-52.

Kelvin-Stokes’ theorem

vecs.stoked Stokes and divergence theorems

Two theorems allow us to exchange certain

integrals in R3 for others that are easier to

evaluate.

The divergence theorem

The divergence theorem asserts the equality of

the surface integral of a vector field F and the

triple integral of div F over the volume V

enclosed by the surface S in R3. That is,

¨
S

F · ndS =

˚
V

div FdV. (1)

Caveats are that V is a closed region bounded

by the orientable12 surface S and that F is

continuous and continuously differentiable over

a region containing V . This theorem makes

some intuitive sense: we can think of the

divergence inside the volume “accumulating”

via the triple integration and equaling the

corresponding surface integral. For more on the

divergence theorem, see Kreyszig13 and Schey.14

A lovely application of the divergence theorem

is that, for any quantity of conserved stuff

(mass, charge, spin, etc.) distributed in a spatial

R3 with time-dependent density ρ : R4 → R and

velocity field v : R4 → R3, the divergence

theorem can be applied to find that

∂tρ = −div(ρv), (2)

which is a more general form of a continuity

equation, one of the governing equations of

many physical phenomena. For a derivation of

this equation, see Schey.15

The Kelvin-Stokes’ theorem

The Kelvin-Stokes’ theorem asserts the equality

of the circulation of a vector field F over a closed

curve C and the surface integral of curl F over a
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piecewise smooth

16. A surface is smooth if its normal is continuous everywhere. It is
piecewise smooth if it is composed of a finite number of smooth surfaces.

17. Kreyszig, Advanced Engineering Mathematics, § 10.9.

18. Schey, Div, Grad, Curl, and All that: An Informal Text on Vector
Calculus, pp. 93-102.

Greene’s theorem

19. Kreyszig, Advanced Engineering Mathematics, § 10.9.

generalized Stokes’ theorem

20. Lee, Introduction to Smooth Manifolds, Ch. 16.

surface S that has boundary C. That is, for r(t) a

parameterization of C and surface normal n,

˛
C

F(r(t)) · r ′(t)dt =
¨

S

n · curl FdS. (3)

Caveats are that S is piecewise smooth,16 its

boundary C is a piecewise smooth simple closed

curve, and F is continuous and continuously

differentiable over a region containing S. This

theorem is also somewhat intuitive: we can

think of the divergence over the surface

“accumulating” via the surface integration and

equaling the corresponding circulation. For

more on the Kelvin-Stokes’ theorem, see

Kreyszig17 and Schey.18

Related theorems

Greene’s theorem is a two-dimensional special

case of the Kelvin-Stokes’ theorem. It is

described by Kreyszig.19

It turns out that all of the above theorems (and

the fundamental theorem of calculus, which

relates the derivative and integral) are special

cases of the generalized Stokes’ theorem defined

by differential geometry. We would need a

deeper understanding of differential geometry

to understand this theorem. For more, see Lee.20
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vecs.exe Exercises for Chapter vecs

Exercise vecs.light

Consider a vector field F : R3 → R3 defined in

Cartesian coordinates (x, y, z) as

F = [x2 − y2, y2 − z2, z2 − x2]. (1)

a. Compute the divergence of F.

b. Compute the curl of F.

c. Prove that, in a simply connected region of

R3, line integrals of F are path-dependent.

d. Prove that F is not the gradient of a

potential (scalar) function (i.e. that it does

not have gradience, as we’ve called it).
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frequency domain

Fourier analysis

1. It’s important to note that the symbol ωn, in this context, is not the
natural frequency, but a frequency indexed by integer n.

frequency spectrum

four.series Fourier series

1 Fourier series are mathematical series that

can represent a periodic signal as a sum of

sinusoids at different amplitudes and

frequencies. They are useful for solving for the

response of a system to periodic inputs.

However, they are probably most important

conceptually: they are our gateway to thinking

of signals in the frequency domain—that is, as

functions of frequency (not time). To represent a

function as a Fourier series is to analyze it as a

sum of sinusoids at different frequencies1 ωn

and amplitudes an. Its frequency spectrum is

the functional representation of amplitudes an

versus frequency ωn.

2 Let’s begin with the definition.

Definition four.1: Fourier series: trigonometric

form
The Fourier analysis of a periodic function y(t)

is, for n ∈ N0, period T , and angular frequency

ωn = 2πn/T ,

an =
2

T

ˆ T/2

−T/2

y(t) cos(ωnt)dt (1)

bn =
2

T

ˆ T/2

−T/2

y(t) sin(ωnt)dt. (2)

The Fourier synthesis of a periodic function

y(t) with analysis components an and bn

corresponding to ωn is

y(t) =
a0
2

+

∞∑
n=1

an cos(ωnt) + bn sin(ωnt).

(3)

3 Let’s consider the complex form of the

Fourier series, which is analogous to

Definition four.1. It may be helpful to review

Euler’s formula(s) – see Appendix D.01.
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harmonic

harmonic frequency

fundamental frequency

harmonic amplitude

Definition four.2: Fourier series: complex form

The Fourier analysis of a periodic function y(t)

is, for n ∈ N0, period T , and angular frequency

ωn = 2πn/T ,

c±n =
1

T

ˆ T/2

−T/2

y(t)e−jωntdt. (4)

The Fourier synthesis of a periodic function y(t)

with analysis components cn corresponding to

ωn is

y(t) =

∞∑
n=−∞ cne

jωnt. (5)

4 We call the integer n a harmonic and the

frequency associated with it,

ωn = 2πn/T, (6)

the harmonic frequency. There is a special name

for the first harmonic (n = 1): the fundamental

frequency. It is called this because all other

frequency components are integer multiples of

it.

5 It is also possible to convert between the two

representations above.

Definition four.3: Fourier series: converting

between forms
The complex Fourier analysis of a periodic

function y(t) is, for n ∈ N0 and an and bn as

defined above,

c±n =
1

2

(
a|n| ∓ jb|n|

)
(7)

The sinusoidal Fourier analysis of a periodic

function y(t) is, for n ∈ N0 and cn as defined

above,

an = cn + c−n and (8)

bn = j (cn − c−n) . (9)

6 The harmonic amplitude Cn is
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magnitude line spectrum

harmonic phase

Cn =
√
a2n + b2n (10)

= 2
√
cnc−n. (11)

A magnitude line spectrum is a graph of the

harmonic amplitudes as a function of the

harmonic frequencies. The harmonic phase is

θn = − arctan2(bn, an) (see Appendix C.02)

= arctan2(Im(cn),Re(cn)). (12)

7 The illustration of Fig. series.1 shows how

sinusoidal components sum to represent a

square wave. A line spectrum is also shown.

time

frequency

spectral amplitude
amplitude

Figure series.1: a partial sum of Fourier components of a square wave shown through time and frequency. The spectral amplitude shows the amplitude of the
corresponding Fourier component.

8 Let us compute the associated spectral

components in the following example.

Example four.series-1 re: Fourier series analysis: line spectrum

Compute the first five harmonic amplitudes

that represent the line spectrum for a square

wave in the figure above.
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1. Python code in this section was generated from a Jupyter notebook
named fourier_series_to_transform.ipynbwith a python3 kernel.

four.trans Fourier transform

We begin with the usual loading of modules.

import numpy as np # for numerics
import sympy as sp # for symbolics
import matplotlib.pyplot as plt # for plots!
from IPython.display import display, Markdown, Latex

Let’s consider a periodic function fwith period

T (T). Each period, the function has a triangular
pulse of width δ (pulse_width) and height δ/2.

period = 15 # period
pulse_width = 2 # pulse width

First, we plot the function f in the time domain.

Let’s begin by defining f.

def pulse_train(t,T,pulse_width):
f = lambda x:pulse_width/2-abs(x) # pulse
tm = np.mod(t,T)
if tm <= pulse_width/2:

return f(tm)
elif tm >= T-pulse_width/2:

return f(-(tm-T))
else:

return 0

Now, we develop a numerical array in time to

plot f.

N = 201 # number of points to plot
tpp = np.linspace(-period/2,5*period/2,N) # time values
fpp = np.array(np.zeros(tpp.shape))
for i,t_now in enumerate(tpp):

fpp[i] = pulse_train(t_now,period,pulse_width)

p = plt.figure(1)
plt.plot(tpp,fpp,'b-',linewidth=2) # plot
plt.xlabel('time (s)')
plt.xlim([-period/2,3*period/2])
plt.xticks(

[0,period],
[0,'$T='+str(period)+'$ s']

)
plt.yticks([0,pulse_width/2],['0','$\delta/2$'])
plt.show() # display here
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For δ = 2 and T ∈ [5, 15, 25], the left-hand column

of Fig. trans.1 shows two triangle pulses for

each period T .

Consider the following argument. Just as a

Fourier series is a frequency domain

representation of a periodic signal, a Fourier

transform is a frequency domain representation

of an aperiodic signal (we will rigorously define

it in a moment). The Fourier series components

will have an analog, then, in the Fourier

transform. Recall that they can be computed by

integrating over a period of the signal. If we

increase that period infinitely, the function is

effectively aperiodic. The result (within a

scaling factor) will be the Fourier transform

analog of the Fourier series components.

Let us approach this understanding by actually

computing the Fourier series components for

increasing period T using ??. We’ll use sympy to
compute the Fourier series cosine and sine

components an and bn for component n (n) and
period T (T).

sp.var('x,a_0,a_n,b_n',real=True)
sp.var('delta,T',positive=True)
sp.var('n',nonnegative=True)
# a0 = 2/T*sp.integrate(
# (delta/2-sp.Abs(x)),
# (x,-delta/2,delta/2) # otherwise zero
# ).simplify()
an = sp.integrate(

2/T*(delta/2-sp.Abs(x))*sp.cos(2*sp.pi*n/T*x),
(x,-delta/2,delta/2) # otherwise zero

).simplify()
bn = 2/T*sp.integrate(

(delta/2-sp.Abs(x))*sp.sin(2*sp.pi*n/T*x),
(x,-delta/2,delta/2) # otherwise zero

).simplify()
display(sp.Eq(a_n,an),sp.Eq(b_n,bn))

an =


T
(
1−cos

(
πδn
T

))
π2n2 for n 6= 0

δ2

2T otherwise

bn = 0

Furthermore, let us compute the harmonic

amplitude
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(f_harmonic_amplitude):

Cn =
√
a2n + b2n (1)

which we have also scaled by a factor T/δ in

order to plot it with a convenient scale.

sp.var('C_n',positive=True)
cn = sp.sqrt(an**2+bn**2)
display(sp.Eq(C_n,cn))

Cn =


T
∣∣cos

(
πδn
T

)
−1

∣∣
π2n2 for n 6= 0

δ2

2T otherwise

Now we lambdify the symbolic expression for a

numpy function.

cn_f = sp.lambdify((n,T,delta),cn)

Now we can plot.

omega_max = 12 # rad/s max frequency in line spectrum
n_max = round(omega_max*period/(2*np.pi)) # max harmonic
n_a = np.linspace(0,n_max,n_max+1)
omega = 2*np.pi*n_a/period
p = plt.figure(2)
markerline, stemlines, baseline = plt.stem(

omega, period/pulse_width*cn_f(n_a,period,pulse_width),
linefmt='b-', markerfmt='bo', basefmt='r-',
use_line_collection=True,

)
plt.xlabel('frequency $\omega$ (rad/s)')
plt.xlim([0,omega_max])
plt.ylim([0,pulse_width/2])
plt.yticks([0,pulse_width/2],['0','$\delta/2$'])
plt.show() # show here

The line spectra are shown in the right-hand

column of Fig. trans.1. Note that with our

chosen scaling, as T increases, the line spectra

reveal a distinct waveform.

Let F be the continuous function of angular

frequency ω

F(ω) =
δ

2
· sin

2(ωδ/4)

(ωδ/4)2
. (2)

First, we plot it.
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amplitude CnT/δ

δ
2

T = 5 s

δ/2

2 4 6 8 10 12

δ/2

δ
2

T = 15 s

δ/2

2 4 6 8 10 12

δ/2

δ
2

T = 25 s

δ/2

time (s)

2 4 6 8 10 12

δ/2

frequency ω (rad/s)

Figure trans.1: triangle pulse trains (left column) with longer periods, descending, and their corresponding line spectra (right column), scaled for convenient
comparison.

F = lambda w: pulse_width/2* \
np.sin(w*pulse_width/(2*2))**2/ \
(w*pulse_width/(2*2))**2

N = 201 # number of points to plot
wpp = np.linspace(0.0001,omega_max,N)
Fpp = []
for i in range(0,N):

Fpp.append(F(wpp[i])) # build array of function values
axes = plt.figure(3)
plt.plot(wpp,Fpp,'b-',linewidth=2) # plot
plt.xlim([0,omega_max])
plt.yticks([0,pulse_width/2],['0','$\delta/2$'])
plt.xlabel('frequency $\omega$ (rad/s)')
plt.ylabel('$F(\omega)$')
plt.show()

0 2 4 6 8 10 12

frequencyω (rad/s)

0

δ/2

Figure trans.2: F(ω), our mysterious Fourier series amplitude analog.Let’s consider the plot in Fig. trans.2 of F. It’s

obviously the function emerging in Fig. trans.1
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from increasing the period of our pulse train.

Now we are ready to define the Fourier

transform and its inverse.

Definition four.4: Fourier transforms:

trigonometric form

Fourier transform (analysis):

A(ω) =

ˆ ∞
−∞ y(t) cos(ωt)dt (3)

B(ω) =

ˆ ∞
−∞ y(t) sin(ωt)dt. (4)

Inverse Fourier transform (synthesis):

y(t) =
1

2π

ˆ ∞
−∞A(ω) cos(ωt)dω+

1

2π

ˆ ∞
−∞ B(ω) sin(ωt)dω.

(5)

Definition four.5: Fourier transforms: complex

form
Fourier transform F (analysis):

F(y(t)) = Y(ω) =

ˆ ∞
−∞ y(t)e−jωtdt. (6)

Inverse Fourier transform F−1 (synthesis):

F−1(Y(ω)) = y(t) =
1

2π

ˆ ∞
−∞ Y(ω)ejωtdω. (7)

So now we have defined the Fourier transform.

There are many applications, including solving

differential equations and frequency domain

representations—called spectra—of time

domain functions.

There is a striking similarity between the

Fourier transform and the Laplace transform,

with which you are already acquainted. In fact,

the Fourier transform is a special case of a

Laplace transform with Laplace transform

variable s = jω instead of having some real

component. Both transforms convert

differential equations to algebraic equations,

which can be solved and inversely transformed
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to find time-domain solutions. The Laplace

transform is especially important to use when

an input function to a differential equation is not

absolutely integrable and the Fourier transform

is undefined (for example, our definition will

yield a transform for neither the unit step nor

the unit ramp functions). However, the Laplace

transform is also preferred for initial value

problems due to its convenient way of handling

them. The two transforms are equally useful for

solving steady state problems. Although the

Laplace transform has many advantages, for

spectral considerations, the Fourier transform is

the only game in town.

A table of Fourier transforms and their

properties can be found in Appendix B.02.

Example four.trans-1 re: a Fourier transform

Consider the aperiodic signal y(t) = us(t)e
−at

with us the unit step function and a > 0. The

signal is plotted below. Derive the complex

frequency spectrum and plot its magnitude and

phase.

−2 −1 0 1 2 3 4 5
0

0.5

1

t

y
(t
)

Figure trans.3: an aperiodic signal.

The signal is aperiodic, so the Fourier transform

can be computed from Eq. 6:

Y(ω) =

ˆ ∞
−∞ y(t)ejωtdt

=

ˆ ∞
−∞ us(t)e−atejωtdt (def. of y)

=

ˆ ∞
0

e−atejωtdt (us effect)

=

ˆ ∞
0

e(−a+jω)tdt (multiply)

=
1

−a+ jω
e(−a+jω)t

∣∣∣∣∞
0

dt

(antiderivative)

=
1

−a+ jω

(
lim
t→∞ e(−a+jω)t − e0

)
(evaluate)
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=
1

−a+ jω

(
lim
t→∞ e−atejωt − 1

)
(arrange)

=
1

−a+ jω
((0)(complex with mag 6 1) − 1)

(limit)

=
−1

−a+ jω
(consequence)

=
1

a− jω

=
a+ jω

a+ jω
· 1

a− jω
(rationalize)

=
a+ jω

a2 +ω2
.

0

0.5

1

|Y
(ω

)|

−10 −5 0 5 10

−1

0

1

ω

∠
Y
(ω

)

Figure trans.4: the magnitude and phase of the Fourier transform.

The magnitude and phase of this complex

function are straightforward to compute:

|Y(ω)| =
√

Re(Y(ω))2 + Im(Y(ω))2

=
1

a2 +ω2

√
a2 +ω2

=
1√

a2 +ω2

∠Y(ω) = arctan(ω/a).

Now we can plot these functions of ω. Setting

a = 1 (arbitrarily), we obtain the plots of

Fig. trans.4.
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2. A function f is square-integrable if
´∞
−∞ |f(x)|2 dx < ∞.

inner product

weight function

3. This definition of the inner product can be extended to functions onR2

and R3 domains using double- and triple-integration. See (� Schey, Div,
Grad, Curl, and All that: An Informal Text on Vector Calculus, p. 261).

orthogonality

basis

function space

legendre polynomials

four.general Generalized fourier series and

orthogonality

Let f : R→ C, g : R→ C, and w : R→ C be

complex functions. For square-integrable2 f, g,

and w, the inner product of f and gwith weight

function w over the interval [a, b] ⊆ R is3

〈f, g〉w =

ˆ b

a

f(x)g(x)w(x)dx (1)

where g denotes the complex conjugate of g.

The inner product of functions can be

considered analogous to the inner (or dot)

product of vectors.

The fourier series components can be found by a

special property of the sin and cos functions
called orthogonality. In general, functions f and

g from above are orthogonal over the interval

[a, b] iff

〈f, g〉w = 0 (2)

for weight function w. Similar to how a set of

orthogonal vectors can be a basis for a vector

space, a set of orthogonal functions can be a

basis for a function space: a vector space of

functions from one set to another (with certain

caveats).

In addition to some sets of sinusoids, there are

several other important sets of functions that are

orthogonal. For instance, sets of legendre

polynomials (Erwin Kreyszig. Advanced

Engineering Mathematics. 10th. John Wiley &

Sons, Limited, 2011. ISBN: 9781119571094. The

authoritative resource for engineering

mathematics. It includes detailed accounts of

probability, statistics, vector calculus, linear

algebra, fourier analysis, ordinary and partial

differential equations, and complex analysis. It

also includes several other topics with varying

degrees of depth. Overall, it is the best place to

start when seeking mathematical guidance.
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bessel functions

generalized fourier series

Fourier components

synthesis

analysis

fourier-legendre series

fourier-bessel series

§ 5.2) and bessel functions (Kreyszig, Advanced

Engineering Mathematics, § 5.4) are orthogonal.

As with sinusoids, the orthogonality of some

sets of functions allows us to compute their

series components. Let functions f0, f1, · · · be
orthogonal with respect to weight function w on

interval [a, b] and let α0, α1, · · · be real constants.
A generalized fourier series is (ibidem, § 11.6)

f(x) =

∞∑
m=0

αmfm(x) (3)

and represents a function f as a convergent

series. It can be shown that the Fourier

components αm can be computed from

αm =
〈f, fm〉w
〈fm, fm〉w

. (4)

In keeping with our previous terminology for

fourier series, Eq. 3 and Eq. 4 are called general

fourier synthesis and analysis, respectively.

For the aforementioned legendre and bessel

functions, the generalized fourier series are

called fourier-legendre and fourier-bessel series

(ibidem, § 11.6). These and the standard fourier

series (Lec. four.series) are of particular interest

for the solution of partial differential equations

(Chapter pde).
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−T/2 −T/4 0 T/4 T/2

−A

−A/2

0

A/2

A

t

y
(t
)

Figure exe.1: one period T of the function y(t). Every line that appears
straight is so.

four.exe Exercises for Chapter four

Exercise four.stanislaw

Explain, in your own words (supplementary

drawings are ok), what the frequency domain is,

how we derive models in it, and why it is useful.

Exercise four.pug

Consider the function

f(t) = 8 cos(t) + 6 sin(2t) +
√
5 cos(4t) + 2 sin(4t) + cos(6t− π/2).

(a) Find the (harmonic) magnitude and

(harmonic) phase of its Fourier series

components. (b) Sketch its magnitude and

phase spectra. Hint: no Fourier integrals are

necessary to solve this problem.

Exercise four.ponyo

Consider the function with a > 0

f(t) = e−a|t|.

From the transform definition, derive the

Fourier transform F(ω) of f(t). Simplify the

result such that it is clear the expression is real

(no imaginary component).

Exercise four.seesaw

Consider the periodic function f : R→ Rwith

period T defined for one period as

f(t) = at for t ∈ (−T/2, T/2] (1)

where a, T ∈ R. Perform a fourier series analysis

on f. Letting a = 5 and T = 1, plot f along with

the partial sum of the fourier series synthesis,

the first 50 nonzero components, over t ∈ [−T, T ].
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4. It may be alarming to see a Fourier transform of a periodic function!
Strictly speaking, it does not exist; however, if we extend the transform
to include the distribution (not actually a function) Dirac δ(ω), the
modified-transform does exist and is given in Table four.1.

4. Python code in this section was generated from a Jupyter notebook
named random_signal_fft.ipynbwith a python3 kernel.

Exercise four.totoro

Consider a periodic function y(t) with some

period T ∈ R and some parameter A ∈ R for

which one period is shown in Fig. exe.1.

1. Perform a trigonometric Fourier series

analysis of y(t) and write the Fourier

series Y(ω).

2. Plot the harmonic amplitude spectrum of

Y(ω) for A = T = 1. Consider using

computing software.

3. Plot the phase spectrum of Y(ω) for

A = T = 1. Consider using computing

software.

Exercise four.mall

Consider the function f : R→ R defined as

f(t) =

a− a|t|/T for t ∈ [−T, T ]

0 otherwise
(2)

where a, T ∈ R. Perform a fourier series analysis

on f, resulting in F(ω). Plot F for various a and T .

Exercise four.miyazaki

Consider the function f : R→ R defined as

f(t) = ae−b|t−T | (3)

where a, b, T ∈ R. Perform a fourier transform

analysis on f, resulting in F(ω). Plot F for

various a, b, and T .

Exercise four.haku

Consider the function f : R→ R defined as

f(t) = a cosω0t+ b sinω0t (4)

where a, b,ω0 ∈ R constants. Perform a fourier

transform analysis on f, resulting in F(ω).4



four Fourier and orthogonality exe Exercises for Chapter four p. 2

Exercise four.secrets

This exercise encodes a “secret word” into a

sampled waveform for decoding via a discrete

fourier transform (DFT). The nominal goal of

the exercise is to decode the secret word. Along

the way, plotting and interpreting the DFT will

be important.

First, load relevant packages.

import numpy as np
import matplotlib.pyplot as plt
from IPython.display import display, Markdown, Latex

We define two functions: letter_to_number to
convert a letter into an integer index of the
alphabet (a becomes 1, b becomes 2, etc.) and

string_to_number_list to convert a string to a
list of ints, as shown in the example at the
end.

def letter_to_number(letter):
return ord(letter) - 96

def string_to_number_list(string):
out = [] # list
for i in range(0,len(string)):

out.append(letter_to_number(string[i]))
return out # list

print(f"aces = { string_to_number_list('aces') }")

aces = [1, 3, 5, 19]

Now, we encode a code string code into a signal
by beginning with “white noise,” which is

broadband (appears throughout the spectrum)

and adding to it sin functions with amplitudes
corresponding to the letter assignments of the

code and harmonic corresponding to the

position of the letter in the string. For instance,

the string 'bad' would be represented by noise
plus the signal

2 sin 2πt+ 1 sin 4πt+ 4 sin 6πt. (5)

Let’s set this up for secret word 'chupcabra'.
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Figure exe.2: the chupacabra signal.

N = 2000
Tm = 30
T = float(Tm)/float(N)
fs = 1/T
x = np.linspace(0, Tm, N)
noise = 4*np.random.normal(0, 1, N)
code = 'chupcabra' # the secret word
code_number_array = np.array(string_to_number_list(code))
y = np.array(noise)
for i in range(0,len(code)):

y = y + code_number_array[i]*np.sin(2.*np.pi*(i+1.)*x)

For proper decoding, later, it is important to

know the fundamental frequency of the

generated data.

print(f"fundamental frequency = {fs} Hz")

fundamental frequency = 66.66666666666667 Hz

Now, we plot.

fig, ax = plt.subplots()
plt.plot(x,y)
plt.xlim([0,Tm/4])
plt.xlabel('time (s)')
plt.ylabel('$y_n$')
plt.show()

Finally, we can save our data to a numpy file
secrets.npy to distribute our message.
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np.save('secrets',y)

Now, I have done this (for a different secret

word!) and saved the data; download it here:

ricopic.one/mathematical_foundations/source/secrets.npy

In order to load the .npy file into Python, we
can use the following command.

secret_array = np.load('secrets.npy')

Your job is to (a) perform a DFT, (b) plot the

spectrum, and (c) decode the message! Here are

a few hints.

1. Use from scipy import fft to do the
DFT.

2. Use a hanning window to minimize the

end-effects. See numpy.hanning for
instance. The fft call might then look like

2*fft(np.hanning(N)*secret_array)/N

where N = len(secret_array).
3. Use only the positive spectrum; you can

lop off the negative side and double the

positive side.

Exercise four.society

Derive a fourier transform property for

expressions including function f : R→ R for

f(t) cos(ω0t+ψ)

where ω0, ψ ∈ R.

Exercise four.flapper

Consider the function f : R→ R defined as

f(t) = aus(t)e
−bt cos(ω0t+ψ) (6)

http://ricopic.one/mathematical_foundations/source/secrets.npy


four Fourier and orthogonality exe Exercises for Chapter four p. 1

/20 p.

where a, b,ω0, ψ ∈ R and us(t) is the unit step

function. Perform a fourier transform analysis

on f, resulting in F(ω). Plot F for various a, b,

ω0, ψ and T .

Exercise four.eastegg

Consider the function f : R→ R defined as

f(t) = g(t) cos(ω0t) (7)

where ω0 ∈ R and g : R→ Rwill be defined in

each part below. Perform a fourier transform

analysis on f for each g below for ω1 ∈ R a

constant and consider how things change if

ω1 → ω0.

a. g(t) = cos(ω1t)

b. g(t) = sin(ω1t)

Exercise four.savage

An instrument called a “lock-in amplifier” can

measure a sinusoidal signal

A cos(ω0t+ψ) = a cos(ω0t) + b sin(ω0t) at a

known frequency ω0 with exceptional accuracy

even in the presence of significant noise N(t).

The workings of these devices can be described

in two operations: first, the following

operations on the signal with its noise,

f1(t) = a cos(ω0t) + b sin(ω0t) +N(t),

f2(t) = f1(t) cos(ω1t) and f3(t) = f1(t) sin(ω1t).

(8)

where ω0,ω1, a, b ∈ R. Note the relation of this
operation to the Fourier transform analysis of

Exercise four.. The key is to know with some

accuracty ω0 such that the instrument can set

ω1 ≈ ω0. The second operation on the signal is

an aggressive low-pass filter. The filtered f2 and

f3 are called the in-phase and quadrature
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components of the signal and are typically given

a complex representation

(in-phase) + j (quadrature).

Explain with fourier transform analyses on f2

and f3

a. what F2 = F(f2) looks like,

b. what F3 = F(f3) looks like,

c. why we want ω1 ≈ ω0,

d. why a low-pass filter is desirable, and

e. what the time-domain signal will look like.

Exercise four.strawman

Consider again the lock-in amplifier explored in

Exercise four.. Investigate the lock-in amplifier

numerically with the following steps.

a. Generate a noisy sinusoidal signal at some

frequency ω0. Include enough broadband

white noise that the signal is invisible in a

time-domain plot.

b. Generate f2 and f3, as described in

Exercise four..

c. Apply a time-domain discrete low-pass

filter to each f2 7→ φ2 and f3 7→ φ3, such as

scipy’s scipy.signal.sosfiltfilt, to
complete the lock-in amplifier operation.

Plot the results in time and as a complex

(polar) plot.

d. Perform a discrete fourier transform on

each f2 7→ F2 and f3 7→ F3. Plot the spectra.

e. Construct a frequency domain low-pass

filter F and apply it (multiply!) to each

F2 7→ F ′2 and F3 7→ F ′3. Plot the filtered

spectra.

f. Perform an inverse discrete fourier

transform to each F ′2 7→ f ′2 and F
′
3 7→ f ′3.

Plot the results in time and as a complex

(polar) plot.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sosfiltfilt.html#scipy.signal.sosfiltfilt
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g. Compare the two methods used, i.e.

time-domain filtering versus

frequency-domain filtering.



ordinary differential equations

lumped-parameter modeling

time-varying spatial distribution

pde

Partial differential equations

An ordinary differential equation is one with

(ordinary) derivatives of functions a single

variable each—time, in many applications.

These typically describe quantities in some sort

of lumped-parameter way: mass as a “point

particle,” a spring’s force as a function of

time-varying displacement across it, a resistor’s

current as a function of time-varying voltage

across it. Given the simplicity of such models in

comparison to the wildness of nature, it is quite

surprising how well they work for a great many

phenomena. For instance, electronics, rigid

body mechanics, population dynamics, bulk

fluid mechanics, and bulk heat transfer can be

lumped-parameter modeled.

However, as we saw in ??, there are many

phenomena of which we require more detailed

models. These include:

• detailed fluid mechanics,

• detailed heat transfer,

• solid mechanics,

• electromagnetism, and

• quantum mechanics.

In many cases, what is required to account for is

the time-varying spatial distribution of a

quantity. In fluid mechanics, we treat a fluid as

having quantities such as density and velocity

that vary continuous over space and time.

Deriving the governing equations for such

phenomena typically involves vector calculus;
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partial differential equations

dependent variables

independent variables

analytic solution

numeric solution

1. There are some analytic techniques for gaining insight into PDEs for
which there are no known solutions, such as considering the phase space.
This is an active area of research; for more, see Bove, Colombini and
Santo. (Antonio Bove, F. (Ferruccio) Colombini and Daniele Del Santo.
Phase space analysis of partial differential equations. eng. Progress in
nonlinear differential equations and their applications ; v. 69. Boston ;
Berlin: Birkhäuser, 2006. ISBN: 9780817645212)

2. Kreyszig, Advanced Engineering Mathematics, Ch. 12.

3. W.A. Strauss. Partial Differential Equations: An Introduction. Wiley,
2007. ISBN: 9780470054567. A thorough and yet relatively compact
introduction.

4. R. Haberman. Applied Partial Differential Equations with Fourier
Series and Boundary Value Problems (Classic Version). PearsonModern
Classics for Advanced Mathematics. Pearson Education Canada, 2018.
ISBN: 9780134995434.

we observed in ?? that statements about

quantities like the divergence (e.g. continuity)

can be made about certain scalar and vector

fields. Such statements are governing equations

(e.g. the continuity equation) and they are

partial differential equations (PDEs) because the

quantities of interest called dependent variables

(e.g. density and velocity) are both temporally

and spatially varying (temporal and spatial

variables are therefore called independent

variables).

In this chapter, we explore the analytic solution

of PDEs. This is related to but distinct from the

numeric solution (i.e. simulation) of PDEs,

which is another important topic. Many PDEs

have no known analytic solution, so numeric

solution is the best available option.1 However,

it is important to note that the insight one can

gain from an analytic solution is often much

greater than that from a numeric solution. This

is easily understood when one considers that a

numeric solution is an approximation for a

specific set of initial and boundary conditions.

Typically, very little can be said of what would

happen in general, although this is often what

we seek to know. So, despite the importance of

numeric solution, one should always prefer an

analytic solution.

Three good texts on PDEs for further study are

Kreyszig,2 Strauss,3 and Haberman.4
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initial conditions

boundary conditions

well-posed problem

linear

nonlinear

order

second-order PDEs

pde.class Classifying PDEs

PDEs often have an infinite number of solutions;

however, when applying them to physical

systems, we usually assume there is a

deterministic or at least a probabilistic sequence

of events will occur. Therefore, we impose

additonal constraints on a PDE usually in the

form of

1. initial conditions, values of independent

variables over all space at an initial time

and

2. boundary conditions, values of

independent variables (or their

derivatives) over all time.

Ideally, imposing such conditions leaves us with

a well-posed problem, which has three aspects.

(Antonio Bove, F. (Ferruccio) Colombini and

Daniele Del Santo. Phase space analysis of

partial differential equations. eng. Progress in

nonlinear differential equations and their

applications ; v. 69. Boston ; Berlin: Birkhäuser,

2006. ISBN: 9780817645212, § 1.5)

existence There exists at least one solution.

uniqueness There exists at most one solution.

stability If the PDE, boundary conditons, or

initial conditions are changed slightly, the

solution changes only slightly.

As with ODEs, PDEs can be linear or nonlinear;

that is, the independent variables and their

derivatives can appear in only linear

combinations (linear PDE) or in one or more

nonlinear combination (nonlinear PDE). As with

ODEs, there are more known analytic solutions

to linear PDEs than nonlinear PDEs.

The order of a PDE is the order of its highest

partial derivative. A great many physical

models can be described by second-order PDEs

or systems thereof. Let u be an independent
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forcing function

homogeneous

scalar variable, a function ofm temporal and

spatial variables xi ∈ Rn. A second-order linear

PDE has the form, for coefficients α,β, γ, δ, real

functions of xi, (W.A. Strauss. Partial

Differential Equations: An Introduction. Wiley,

2007. ISBN: 9780470054567. A thorough and yet

relatively compact introduction. § 1.6)

n∑
i=1

n∑
j=1

αij∂
2
xixj

u︸ ︷︷ ︸
second-order terms

+

m∑
k=1

(γk∂xk
u+ δku)︸ ︷︷ ︸

first- and zeroth-order terms

= f(x1, · · · , xn)︸ ︷︷ ︸
forcing

(1)

where f is called a forcing function. When f is

zero, Eq. 1 is called homogeneous. We can

consider the coefficients αij to be components of

a matrix A with rows indexed by i and columns

indexed by j. There are four prominent classes

defined by the eigenvalues of A:

elliptic the eigenvalues all have the same sign,

parabolic the eigenvalues have the same sign

except one that is zero,

hyperbolic exactly one eigenvalue has the

opposite sign of the others, and

ultrahyperbolic at least two eigenvalues of

each signs.

The first three of these have received extensive

treatment. They are named after conic sections

due to the similarity the equations have with

polynomials when derivatives are considered

analogous to powers of polynomial variables.

For instance, here is a case of each of the first

three classes,

∂2xxu+ ∂2yyu = 0 (elliptic)

∂2xxu− ∂2yyu = 0 (hyperbolic)

∂2xxu− ∂tu = 0. (parabolic)

When A depends on xi, it may have multiple

classes across its domain. In general, this

equation and its associated initial and boundary
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cauchy-kowalevski theorem

cauchy problems

conditions do not comprise a well-posed

problem; however several special cases have

been shown to be well-posed. Thus far, the most

general statement of existence and uniqueness is

the cauchy-kowalevski theorem for cauchy

problems.
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sturm-liouville (S-L) differential equation

regular S-L problem

5. For the S-L problem to be regular, it has the additional constraints
that p,q,σ are continuous and p,σ > 0 on [a,b]. This is
also sometimes called the sturm-liouville eigenvalue problem. See
Haberman (Haberman, Applied Partial Differential Equations with
Fourier Series and Boundary Value Problems (Classic Version), § 5.3)
for the more general (non-regular) S-L problem and Haberman (ibidem,
§ 7.4) for the multi-dimensional analog.

boundary value problems

eigenfunctions

eigenvalues

6. These eigenvalues are closely related to, but distinct from, the
“eigenvalues” that arise in systems of linear ODEs.

7. ibidem, § 5.3.

pde.sturm Sturm-liouville problems

Before we introduce an important solution

method for PDEs in Lec. pde.separation, we

consider an ordinary differential equation that

will arise in that method when dealing with a

single spatial dimension x: the sturm-liouville

(S-L) differential equation. Let p, q, σ be

functions of x on open interval (a, b). Let X be

the dependent variable and λ constant. The

regular S-L problem is the S-L ODE5

d
dx

(
pX ′)+ qX+ λσX = 0 (1a)

with boundary conditions

β1X(a) + β2X
′(a) = 0 (2a)

β3X(b) + β4X
′(b) = 0 (2b)

with coefficients βi ∈ R. This is a type of
boundary value problem.

This problem has nontrivial solutions, called

eigenfunctions Xn(x) with n ∈ Z+,

corresponding to specific values of λ = λn called

eigenvalues.6 There are several important

theorems proven about this (see Haberman7).

Of greatest interest to us are that

1. there exist an infinite number of

eigenfunctions Xn (unique within a

multiplicative constant),

2. there exists a unique corresponding real

eigenvalue λn for each eigenfunction Xn,

3. the eigenvalues can be ordered as

λ1 < λ2 < · · · ,
4. eigenfunction Xn has n− 1 zeros on open

interval (a, b),

5. the eigenfunctions Xn form an orthogonal

basis with respect to weighting function σ

such that any piecewise continuous

function f : [a, b]→ R can be represented

by a generalized fourier series on [a, b].
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homogeneous boundary conditions

periodic boundary conditions

This last theorem will be of particular interest in

Lec. pde.separation.

Types of boundary conditions

Boundary conditions of the sturm-liouville kind

(2) have four sub-types:

dirichlet for just β2, β4 = 0,

neumann for just β1, β3 = 0,

robin for all βi 6= 0, and
mixed if β1 = 0, β3 6= 0; if β2 = 0, β4 6= 0.

There are many problems that are not regular

sturm-liouville problems. For instance, the

right-hand sides of Eq. 2 are zero, making them

homogeneous boundary conditions; however,

these can also be nonzero. Another case is

periodic boundary conditions:

X(a) = X(b) (3a)

X ′(a) = X ′(b). (3b)

Example pde.sturm-1 re: a sturm-liouville problem with dirichlet

boundary conditionsConsider the differential equation

X ′′ + λX = 0 (4)

with dirichlet boundary conditions on the

boundary of the interval [0, L]

X(0) = 0 and X(L) = 0. (5)

Solve for the eigenvalues and eigenfunctions.

This is a sturm-liouville problem, so we know

the eigenvalues are real. The well-known

general solutions to the ODE is

X(x) =

k1 + k2x λ = 0

k1e
j
√
λx + k2e

−j
√
λx otherwise

(6)

with real constants k1, k2. The solution must

also satisfy the boundary conditions. Let’s
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apply them to the case of λ = 0 first:

X(0) = 0⇒ k1 + k2(0) = 0⇒ k1 = 0 (7)

X(L) = 0⇒ k1 + k2(L) = 0⇒ k2 = −k1/L. (8)

Together, these imply k1 = k2 = 0, which

gives the trivial solution X(x) = 0, in which we

aren’t interested. We say, then, for nontrivial

solutions λ 6= 0. Now let’s check λ < 0. The

solution becomes

X(x) = k1e
−
√

|λ|x + k2e
√
|λ|x (9)

= k3 cosh(
√
|λ|x) + k4 sinh(

√
|λ|x) (10)

where k3 and k4 are real constants. Again

applying the boundary conditions:

X(0) = 0⇒ k3 cosh(0) + k4 sinh(0) = 0⇒ k3 + 0 = 0⇒ k3 = 0

X(L) = 0⇒ 0 cosh(
√
|λ|L) + k4 sinh(

√
|λ|L) = 0⇒ k4 sinh(

√
|λ|L) = 0.

However, sinh(
√
|λ|L) 6= 0 for L > 0, so k4 =

k3 = 0—again, the trivial solution. Now let’s

try λ > 0. The solution can be written

X(x) = k5 cos(
√
λx) + k6 sin(

√
λx). (11)

Applying the boundary conditions for this case:

X(0) = 0⇒ k5 cos(0) + k6 sin(0) = 0⇒ k5 + 0 = 0⇒ k5 = 0

X(L) = 0⇒ 0 cos(
√
λL) + k6 sin(

√
λL) = 0⇒ k6 sin(

√
λL) = 0.

Now, sin(
√
λL) = 0 for
√
λL = nπ⇒

λ =
(nπ
L

)2
. (n ∈ Z+)

Therefore, the only nontrivial solutions that

satisfy both the ODE and the boundary

conditions are the eigenfunctions

Xn(x) = sin
(√

λnx
)

(12a)

= sin
(nπ
L
x
)

(12b)

with corresponding eigenvalues

λn =
(nπ
L

)2
. (13)

Note that because λ > 0, λ1 is the lowest

eigenvalue.
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Plotting the eigenfunctions

The following was generated from a Jupyter

notebook with the following filename and

kernel.

notebook filename: eigenfunctions_example_plot.ipynb
notebook kernel: python3

First, load some Python packages.

import numpy as np
import matplotlib.pyplot as plt
from IPython.display import display, Markdown, Latex

Set L = 1 and compute values for the first four

eigenvalues lambda_n and eigenfunctions X_n.

L = 1
x = np.linspace(0,L,100)
n = np.linspace(1,4,4,dtype=int)
lambda_n = (n*np.pi/L)**2
X_n = np.zeros([len(n),len(x)])
for i,n_i in enumerate(n):
X_n[i,:] = np.sin(np.sqrt(lambda_n[i])*x)

Plot the eigenfunctions.

for i,n_i in enumerate(n):
plt.plot(

x,X_n[i,:],
linewidth=2,label='n = '+str(n_i)

)
plt.legend()
plt.show() # display the plot

0.0 0.2 0.4 0.6 0.8 1.0

−1

−0.5

0

0.5

1

n = 1
n = 2
n = 3
n = 4

We see that the fourth of the S-L theorems

appears true: n − 1 zeros of Xn exist on the

open interval (0, 1).
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separation of variables

linear

product solution

separable PDEs

pde.separation PDE solution by separation of variables

We are now ready to learn one of the most

important techniques for solving PDEs:

separation of variables. It applies only to linear

PDEs since it will require the principle of

superposition. Not all linear PDEs yield to this

solution technique, but several that are

important do.

The technique includes the following steps.

assume a product solution Assume the

solution can be written as a product

solution up: the product of functions of

each independent variable.

separate PDE Substitute up into the PDE and

rearrange such that at least one side of the

equation has functions of a single

independent variabe. If this is possible,

the PDE is called separable.

set equal to a constant Each side of the

equation depends on different

independent variables; therefore, they

must each equal the same constant, often

called −λ.

repeat separation, as needed If there are

more than two independent variables,

there will be an ODE in the separated

variable and a PDE (with one fewer

variables) in the other independent

variables. Attempt to separate the PDE

until only ODEs remain.

solve each boundary value problem Solve

each boundary value problem ODE,

ignoring the initial conditions for now.

solve the time variable ODE Solve for the

general solution of the time variable ODE,

sans initial conditions.

construct the product solution Multiply the

solution in each variable to construct the

product solution up. If the boundary
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eigenfunctions

superposition

value problems were sturm-liouville, the

product solution is a family of

eigenfunctions from which any function

can be constructed via a generalized

fourier series.

apply the initial condition The product

solutions individually usually do not meet

the initial condition. However, a

generalized fourier series of them nearly

always does. Superposition tells us a

linear combination of solutions to the PDE

and boundary conditions is also a

solution; the unique series that also

satisfies the initial condition is the unique

solution to the entire problem.

Example pde.separation-1 re: 1D diffusion equation

Consider the one-dimensional diffusion

equation PDEa

∂tu(t, x) = k∂
2
xxu(t, x) (1)

with real constant k, with dirichlet boundary

conditions on inverval x ∈ [0, L]

u(t, 0) = 0 (2a)

u(t, L) = 0, (2b)

and with initial condition

u(0, x) = f(x), (3)

where f is some piecewise continuous function

on [0, L].

a. For more on the diffusion or heat equation, see Haberman,
(Haberman, Applied Partial Differential Equations with Fourier
Series and Boundary Value Problems (Classic Version), § 2.3)
Kreyszig, (Kreyszig, Advanced Engineering Mathematics,
§ 12.5) and Strauss. (Strauss, Partial Differential Equations: An
Introduction, § 2.3)

Assume a product solution

First, we assume a product solution of the form

up(t, x) = T(t)X(x)where T and X are unknown
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functions on t > 0 and x ∈ [0, L].

Separate PDE

Second, we substitute the product solution into

Eq. 1 and separate variables:

T ′X = kTX ′′ ⇒ (4)

T ′

kT
=
X ′′

X
. (5)

So it is separable! Note that we chose to group

kwith T , which was arbitrary but conventional.

Set equal to a constant

Since these two sides depend on different

independent variables (t and x), they must

equal the same constant we call −λ, so we have

two ODEs:

T ′

kT
= −λ ⇒ T ′ + λkT = 0 (6)

X ′′

X
= −λ ⇒ X ′′ + λX = 0. (7)

Solve the boundary value problem

The latter of these equations with the

boundary conditions (2) is precisely the same

sturm-liouville boundary value problem

from Example pde.sturm-1, which had

eigenfunctions

Xn(x) = sin
(√

λnx
)

(8a)

= sin
(nπ
L
x
)

(8b)

with corresponding (positive) eigenvalues

λn =
(nπ
L

)2
. (9)

Solve the time variable ODE

The time variable ODE is homogeneous and has

the familiar general solution

T(t) = ce−kλt (10)
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with real constant c. However, the boundary

value problem restricted values of λ to λn, so

Tn(t) = ce
−k(nπ/L)2t. (11)

Construct the product solution

The product solution is

up(t, x) = Tn(t)Xn(x)

= ce−k(nπ/L)2t sin
(nπ
L
x
)
. (12)

This is a family of solutions that each satisfy

only exotically specific initial conditions.

Apply the initial condition

The initial condition is u(0, x) = f(x). The

eigenfunctions of the boundary value problem

form a fourier series that satisfies the initial

condition on the interval [0, L] if we extend

f to be periodic and odd over x (Kreyszig,

Advanced Engineering Mathematics, p. 550);

we call the extension f∗. The odd series

synthesis can be written

f∗(x) =

∞∑
n=1

bn sin
(nπ
L
x
)

(13)

where the fourier analysis gives

bn =
2

L

ˆ L

0

f∗(χ) sin
(nπ
L
χ
)
. (14)

So the complete solution is

u(t, x) =

∞∑
n=1

bne
−k(nπ/L)2t sin

(nπ
L
x
)
. (15)

Notice this satisfies the PDE, the boundary

conditions, and the initial condition!

Plotting solutions

If we want to plot solutions, we need to specify

an initial conditionu(0, x) = f∗(x) over [0, L]. We
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can choose anything piecewise continuous, but

for simplicity let’s let

f(x) = 1. (x ∈ [0, L])

The odd periodic extension is an odd square

wave. The integral (14) gives

bn =
4

nπ
(1− cos(nπ))

=

0 n even

4
nπ n odd.

(16)

Now we can write the solution as

u(t, x) =

∞∑
n=1,n odd

4

nπ
e−k(nπ/L)2t sin

(nπ
L
x
)
.

(17)

Plotting in Python

First, load some Python packages.

import numpy as np
import matplotlib.pyplot as plt
from IPython.display import display, Markdown, Latex

Set k = L = 1 and sumvalues for the first N terms
of the solution.

L = 1
k = 1
N = 100
x = np.linspace(0,L,300)
t = np.linspace(0,2*(L/np.pi)**2,100)
u_n = np.zeros([len(t),len(x)])
for n in range(N):
n = n+1 # because index starts at 0
if n % 2 == 0: # even

pass # already initialized to zeros
else: # odd

u_n += 4/(n*np.pi)*np.outer(
np.exp(-k*(n*np.pi/L)**2*t),
np.sin(n*np.pi/L*x)

)

Let’s first plot the initial condition.
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p = plt.figure();
plt.plot(x,u_n[0,:]);
plt.xlabel('space $x$')
plt.ylabel('$u(0,x)$')
plt.show()
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Now we plot the entire response.

p = plt.figure();
plt.contourf(t,x,u_n.T)
c = plt.colorbar()
c.set_label('$u(t,x)')
plt.xlabel('time $t$')
plt.ylabel('space $x$')
plt.show()
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We see the diffusive action proceeds as we

expected.

. Python code in this section was generated from a Jupyter
notebook named pde_separation_example_01.ipynb with a
python3 kernel.
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wave equation

8. Kreyszig, Advanced Engineering Mathematics, § 12.9, 12.10.

9. Haberman, Applied Partial Differential Equations with Fourier Series
and Boundary Value Problems (Classic Version), § 4.5, 7.3.

pde.wave The 1D wave equation

The one-dimensional wave equation is the

linear PDE

∂2ttu(t, x) = c
2∂2xxu(t, x). (1)

with real constant c. This equation models such

phenomena as strings, fluids, sound, and light.

It is subject to initial and boundary conditions

and can be extended to multiple spatial

dimensions. For 2D and 3D examples in

rectangular and polar coordinates, see

Kreyszig8 and Haberman.9

Example pde.wave-1 re: vibrating string PDE solution by

separation of variablesConsider the one-dimensional wave equation

PDE

∂2ttu(t, x) = c
2∂2xxu(t, x) (2)

with real constant c and with dirichlet

boundary conditions on inverval x ∈ [0, L]

u(t, 0) = 0 and u(t, L) = 0, (3a)

and with initial conditions (we need two

because of the second time-derivative)

u(0, x) = f(x) and ∂tu(0, x) = g(x), (4)

where f and g are some piecewise continuous

functions on [0, L].

Assume a product solution

First, we assume a product solution of the form

up(t, x) = T(t)X(x)where T and X are unknown

functions on t > 0 and x ∈ [0, L].



pde Partial differential equations wave The 1D wave equation p. 2

Separate PDE

Second, we substitute the product solution into

Eq. 2 and separate variables:

T ′′X = c2TX ′′ ⇒ (5)

T ′′

c2T
=
X ′′

X
. (6)

So it is separable! Note that we chose to group

cwith T , which was arbitrary but conventional.

Set equal to a constant

Since these two sides depend on different

independent variables (t and x), they must

equal the same constant we call −λ, so we have

two ODEs:

T ′′

c2T
= −λ ⇒ T ′′ + λc2T = 0 (7)

X ′′

X
= −λ ⇒ X ′′ + λX = 0. (8)

Solve the boundary value problem

The latter of these equations with the

boundary conditions (3) is precisely the same

sturm-liouville boundary value problem

from Example pde.sturm-1, which had

eigenfunctions

Xn(x) = sin
(√

λnx
)

(9a)

= sin
(nπ
L
x
)

(9b)

with corresponding (positive) eigenvalues

λn =
(nπ
L

)2
. (10)

Solve the time variable ODE

The time variable ODE is homogeneous and,

with λ restricted by the reals by the boundary

value problem, has the familiar general solution

T(t) = k1 cos(c
√
λt) + k2 sin(c

√
λt) (11)
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with real constants k1 and k2. However, the

boundary value problem restricted values of λ

to λn, so

Tn(t) = k1 cos
(cnπ
L
t
)
+ k2 sin

(cnπ
L
t
)
. (12)

Construct the product solution

The product solution is

up(t, x) = Tn(t)Xn(x)

= k1 sin
(nπ
L
x
)

cos
(cnπ
L
t
)
+ k2 sin

(nπ
L
x
)

sin
(cnπ
L
t
)
.

This is a family of solutions that each satisfy

only exotically specific initial conditions.

Apply the initial conditions

Recall that superposition tells us that any linear

combination of the product solution is also a

solution. Therefore,

u(t, x) =

∞∑
n=1

an sin
(nπ
L
x
)

cos
(cnπ
L
t
)
+ bn sin

(nπ
L
x
)

sin
(cnπ
L
t
)

(13)

is a solution. If an and bn are properly selected

to satisfy the initial conditions, Eq. 13 will be

the solution to the entire problem. Substituting

t = 0 into our potential solution gives

u(0, x) =

∞∑
n=1

an sin
(nπ
L
x
)

(14a)

∂tu(t, x)|t=0 =

∞∑
n=1

bn
cnπ

L
sin

(nπ
L
x
)
. (14b)

Let us extend f and g to be periodic and odd

over x; we call the extensions f∗ and g∗. From

Eq. 14, the intial conditions are satsified if

f∗(x) =

∞∑
n=1

an sin
(nπ
L
x
)

(15a)

g∗(x) =

∞∑
n=1

bn
cnπ

L
sin

(nπ
L
x
)
. (15b)
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We identify these as two odd fourier syntheses.

The corresponding fourier analyses are

an =
2

L

ˆ L

0

f∗(χ) sin
(nπ
L
χ
)

(16a)

bn
cnπ

L
=
2

L

ˆ L

0

g∗(χ) sin
(nπ
L
χ
)

(16b)

So the complete solution is Eq. 13 with

components given by Eq. 16. Notice this

satisfies the PDE, the boundary conditions, and

the initial condition!

Discussion

It can be shown that this series solution is

equivalent to two traveling waves that are

interfering (see Habermana and Kreyszigb).

This is convenient because computing the

series solution exactly requires an infinite

summation. We show in the following section

that the approximation by partial summation

is still quite good.

Choosing specific initial conditions

If we want to plot solutions, we need to specify

initial conditions over [0, L]. Let’smodel a string

being suddenly struck from rest as

f(x) = 0 (17)

g(x) = δ(x− ∆L) (18)

where δ is the dirac delta distribution and ∆ ∈
[0, L] is a fraction of L representing the location

of the string being struck. The odd periodic

extension is an odd pulse train. The integrals

of (16) give

an = 0 (19a)

bn =
2

cnπ

ˆ L

0

δ(χ− ∆L) sin
(nπ
L
χ
)

dx

=
2

cnπ
sin(nπ∆). (sifting property)
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Now we can write the solution as

u(t, x) =

∞∑
n=1

2

cnπ
sin(nπ∆) sin

(nπ
L
x
)

sin
(cnπ
L
t
)
.

(20)

Plotting in Python

First, load some Python packages.

import numpy as np
import matplotlib.pyplot as plt
from IPython.display import display, Markdown, Latex

Set c = L = 1 and sumvalues for the first N terms
of the solution for some striking location ∆.

Delta = 0.1 # 0 <= Delta <= L
L = 1
c = 1
N = 150
t = np.linspace(0,30*(L/np.pi)**2,100)
x = np.linspace(0,L,150)
t_b, x_b = np.meshgrid(t,x)
u_n = np.zeros([len(x),len(t)])
for n in range(N):
n = n+1 # because index starts at 0
u_n += 4/(c*n*np.pi)* \

np.sin(n*np.pi*Delta)* \
np.sin(c*n*np.pi/L*t_b)* \
np.sin(n*np.pi/L*x_b)

Let’s first plot some early snapshots of the

response.

import seaborn as sns
n_snaps = 7
sns.set_palette(
sns.diverging_palette(

240, 10, n=n_snaps, center="dark"
)

)

fig, ax = plt.subplots()
it = np.linspace(2,77,n_snaps,dtype=int)
for i in range(len(it)):
ax.plot(x,u_n[:,it[i]],label=f"t = {t[i]:.3f}");

lgd = ax.legend(
bbox_to_anchor=(1.05, 1),
loc='upper left'
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)
plt.xlabel('space $x$')
plt.ylabel('$u(t,x)$')
plt.show()
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Now we plot the entire response.

fig, ax = plt.subplots()
p = ax.contourf(t,x,u_n)
c = fig.colorbar(p,ax=ax)
c.set_label('$u(t,x)$')
plt.xlabel('time $t$')
plt.ylabel('space $x$')
plt.show()
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We see a wave develop and travel, reflecting

and inverting off each boundary.

a. Haberman, Applied Partial Differential Equationswith Fourier
Series and Boundary Value Problems (Classic Version), § 4.4.

b. Kreyszig, Advanced Engineering Mathematics, § 12.2.

b. Python code in this section was generated from a Jupyter
notebook named pde_separation_example_02.ipynb with a
python3 kernel.
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Figure exe.1: initial condition for Exercise pde..

pde.exe Exercises for Chapter pde

Exercise pde.horticulture

The PDE of Example pde.separation-1 can be

used to describe the conduction of heat along a

long, thin rod, insulated along its length, where

u(t, x) represents temperature. The initial and

dirichlet boundary conditions in that example

would be interpreted as an initial temperature

distribution along the bar and fixed

temperatures of the ends. Now consider the

same PDE

∂tu(t, x) = k∂
2
xxu(t, x) (1)

with real constant k, with mixed boundary

conditions on inverval x ∈ [0, L]

u(t, 0) = 0 (2a)

∂xu(t, x)|x=L = 0, (2b)

and with initial condition

u(0, x) = f(x), (3)

where f is some piecewise continuous function

on [0, L]. This represents the insulation of one

end (L) of the rod and the other end (0) is held at

a fixed temperature.

a. Assume a product solution, separate

variables into X(x) and T(t), and set the

separation constant to −λ.

b. Solve the boundary value problem for its

eigenfunctions Xn and eigenvalues λn.

c. Solve for the general solution of the time

variable ODE.

d. Write the product solution and apply the

initial condition f(x) by constructing it

from a generalized fourier series of the

product solution.

e. Let L = k = 1 and
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f(x) =

0 for x ∈ [0, L/2)

100 for x ∈ [L/2, L]
(4)

as shown in Fig. exe.1. Compute the

solution series components. Plot the sum

of the first 50 terms over x and t.

Exercise pde.poltergeist

The PDE of Example pde.separation-1 can be

used to describe the conduction of heat along a

long, thin rod, insulated along its length, where

u(t, x) represents temperature. The initial and

dirichlet boundary conditions in that example

would be interpreted as an initial temperature

distribution along the bar and fixed

temperatures of the ends. Now consider the

same PDE

∂tu(t, x) = k∂
2
xxu(t, x) (5)

with real constant k, now with neumann

boundary conditions on inverval x ∈ [0, L]

∂xu|x=0 = 0 and ∂xu|x=L = 0, (6a)

and with initial condition

u(0, x) = f(x), (7)

where f is some piecewise continuous function

on [0, L]. This represents the complete insulation

of the ends of the rod, such that no heat flows

from the ends (or from anywhere else).

a. Assume a product solution, separate

variables into X(x) and T(t), and set the

separation constant to −λ.

b. Solve the boundary value problem for its

eigenfunctions Xn and eigenvalues λn.

c. Solve for the general solution of the time

variable ODE.
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d. Write the product solution and apply the

initial condition f(x) by constructing it

from a generalized fourier series of the

product solution.

e. Let L = k = 1 and

f(x) = 100− 200/L |x− L/2| as shown in

Fig. exe.2. Compute the solution series

components. Plot the sum of the first 50

terms over x and t.

0 0.2 0.4 0.6 0.8 1
0
50
100

x

f(
x
)

Figure exe.2: initial condition for ??.

Exercise pde.kathmandu

Consider the free vibration of a uniform and

relatively thin beam—with modulus of elasticity

E, second moment of cross-sectional area I, and

mass-per-length µ—pinned at each end. The

PDE describing this is a version of the

euler-bernoulli beam equation for vertical

motion u:

∂2ttu(t, x) = −α2∂4xxxxu(t, x) (8)

with real constant α defined as

α2 =
EI

µ
. (9)

Pinned supports fix vertical motion such that we

have boundary conditions on interval x ∈ [0, L]

u(t, 0) = 0 and u(t, L) = 0. (10a)

Additionally, pinned supports cannot provide a

moment, so

∂2xxu|x=0 = 0 and ∂2xxu|x=L = 0. (10b)
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Furthermore, consider the initial conditions

u(0, x) = f(x), and ∂tu|t=0 = 0. (11a)

where f is some piecewise continuous function

on [0, L].

a. Assume a product solution, separate

variables into X(x) and T(t), and set the

separation constant to −λ.

b. Solve the boundary value problem for its

eigenfunctions Xn and eigenvalues λn.

Assume real λ > 0 (it’s true but tedious to

show).

c. Solve for the general solution of the time

variable ODE.

d. Write the product solution and apply the

initial conditions by constructing it from a

generalized fourier series of the product

solution.

e. Let L = α = 1 and f(x) = sin(10πx/L) as
shown in Fig. exe.3. Compute the solution

series components. Plot the sum of the

first 50 terms over x and t.
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Figure exe.3: initial condition for Exercise pde..
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objective function

extremum

global extremum

local extremum

gradient descent

stationary point

saddle point

hessian matrix

second partial derivative test

positive definite

opt.grad Gradient descent

Consider a multivariate function f : Rn → R that

represents some cost or value. This is called an

objective function, and we often want to find an

X ∈ Rn that yields f’s extremum: minimum or

maximum, depending on whichever is

desirable.

It is important to note however that some

functions have no finite extremum. Other

functions have multiple. Finding a global

extremum is generally difficult; however, many

good methods exist for finding a local

extremum: an extremum for some region

R ⊂ Rn.

The method explored here is called gradient

descent. It will soon become apparent why it

has this name.

Stationary points

Recall from basic calculus that a function f of a

single variable had potential local extrema

where df(x)/dx = 0. The multivariate version of
this, for multivariate function f, is

grad f = 0. (1)

A value X for which Eq. 1 holds is called a

stationary point. However, as in the univariate

case, a stationary point may not be a local

extremum; in these cases, it called a saddle

point.

Consider the hessian matrix Hwith values, for

independent variables xi,

Hij = ∂
2
xixj

f. (2)

For a stationary point X, the second partial

derivative test tells us if it is a local maximum,

local minimum, or saddle point:

minimum If H(X) is positive definite (all its

eigenvalues are positive),
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negative definite

indefinite

convex

concave

the gradient points toward stationary points

line search

step size α

X is a local minimum.

maximum If H(X) is negative definite (all its

eigenvalues are negative),

X is a local maximum.

saddle If H(X) is indefinite (it has both positive

and negative eigenvalues),

X is a saddle point.

These are sometimes called tests for concavity:

minima occur where f is convex and maxima

where f is concave (i.e. where −f is convex).

It turns out, however, that solving Eq. 1 directly

for stationary points is generally hard.

Therefore, we will typically use an iterative

technique for estimating them.

The gradient points the way

Although Eq. 1 isn’t usually directly useful for

computing stationary points, it suggests

iterative techniques that are. Several techniques

rely on the insight that the gradient points

toward stationary points. Recall from

Lec. vecs.grad that grad f is a vector field that
points in the direction of greatest increase in f.

Consider starting at some point x0 and wanting

to move iteratively closer to a stationary point.

So, if one is seeking a maximum of f, then

choose x1 to be in the direction of grad f. If one
is seeking a minimum of f, then choose x1 to be

opposite the direction of grad f.
The question becomes: how far α should we go

in (or opposite) the direction of the gradient?

Surely too-small αwill require more iteration

and too-large αwill lead to poor convergence or

missing minima altogether. This framing of the

problem is called line search. There are a few

common methods for choosing α, called the step

size, some more computationally efficient than

others.

Two methods for choosing the step size are

described below. Both are framed as
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1. Kreyszig, Advanced Engineering Mathematics, § 22.1.

minimization methods, but changing the sign of

the step turns them into maximization methods.

The classical method

Let

gk = grad f(xk), (3)

the gradient at the algorithm’s current estimate

xk of the minimum. The classical method of

choosing α is to attempt to solve analytically for

αk = argmin
α

f(xk − αgk). (4)

This solution approximates the function f as one

varies α. It is approximate because as α varies,

so should x. But even with α as the only

variable, Eq. 4 may be difficult or impossible to

solve. However, this is sometimes called the

“optimal” choice for α. Here “optimality” refers

not to practicality but to ideality. This method is

rarely used to solve practical problems.

The algorithm of the classical gradient descent

method can be summarized in the pseudocode

of Algorithm grad.1. It is described further in

Kreyszig.1

Algorithm grad.1 Classical gradient descent

1: procedure classical_minimizer(f,x0,T )
2: while δx > T do . until threshold T is met
3: gk ← grad f(xk)
4: αk ← argminα f(xk − αgk)

5: xk+1 ← xk − αkgk

6: δx← ‖xk+1 − xk‖
7: k← k+ 1

8: end while
9: return xk . the threshold was reached
10: end procedure

The Barzilai and Borwein method

In practice, several non-classical methods are

used for choosing step size α. Most of these
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2. Jonathan Barzilai and Jonathan M. Borwein. ?Two-Point Step Size
Gradient Methods? inIMA Journal of Numerical Analysis: 8.1 (january
1988), pages 141–148. issn: 0272-4979. doi: 10.1093/imanum/8.1.
141. This includes an innovative line search method.

3. ibidem.

construct criteria for step sizes that are too small

and too large and prescribe choosing some α

that (at least in certain cases) must be in the

sweet-spot in between. Barzilai and Borwein2

developed such a prescription, which we now

present.

Let ∆xk = xk − xk−1 and ∆gk = gk − gk−1. This

method minimizes ‖∆x− α∆g‖2 by choosing

αk =
∆xk · ∆gk

∆gk · ∆gk
. (5)

The algorithm of this gradient descent method

can be summarized in the pseudocode of

Algorithm grad.2. It is described further in

Barzilai and Borwein.3

Algorithm grad.2 Barzilai and Borwein gradient
descent
1: procedure barzilai_minimizer(f,x0,T )
2: while δx > T do . until threshold T is met
3: gk ← grad f(xk)
4: ∆gk ← gk − gk−1

5: ∆xk ← xk − xk−1

6: αk ← ∆xk·∆gk

∆gk·∆gk

7: xk+1 ← xk − αkgk

8: δx← ‖xk+1 − xk‖
9: k← k+ 1

10: end while
11: return xk . the threshold was reached
12: end procedure

Example opt.grad-1 re: Barzilai and Borwein gradient descent

Consider the functions (a) f1 : R2 → R and (b)

f2 : R2 → R defined as

f1(x) = (x1 − 25)2 + 13(x2 + 10)2 (6)

f2(x) =
1

2
x ·Ax− b · x (7)

where

A =

[
20 0

0 10

]
and (8a)

b =
[
1 1

]>
. (8b)

https://doi.org/10.1093/imanum/8.1.141
https://doi.org/10.1093/imanum/8.1.141


opt Optimization grad Gradient descent p. 3

Use the method of Barzilai and Borweina

starting at some x0 to find a minimum of each

function.

a. Barzilai and Borwein, ?Two-Point Step SizeGradientMethods?

First, load some Python packages.

from sympy import *
import numpy as np
import matplotlib.pyplot as plt
from IPython.display import display, Markdown, Latex
from tabulate import tabulate

---------------------------------------------------------------------------

ModuleNotFoundError Traceback
(most recent call last)↪→

/tmp/ipykernel_1136564/820890629.py in <module>
3 import matplotlib.pyplot as plt
4 from IPython.display import display,

Markdown, Latex↪→

----> 5 from tabulate import tabulate

ModuleNotFoundError: No module named 'tabulate'

We begin by writing a class

gradient_descent_min to perform the

gradient descent. This is not optimized for

speed.

class gradient_descent_min():
""" A Barzilai and Borwein gradient descent class.

Inputs:
* f: Python function of x variables
* x: list of symbolic variables (eg [x1, x2])
* x0: list of numeric initial guess of a min of f
* T: step size threshold for stopping the descent

To execute the gradient descent call descend method.

nb: This is only for gradients in cartesian
coordinates! Further work would be to implement
this in multiple or generalized coordinates.
See the grad method below for implementation.

"""

def __init__(self,f,x,x0,T):
self.f = f
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self.x = Array(x)
self.x0 = np.array(x0)
self.T = T
self.n = len(x0) # size of x
self.g = lambdify(x,self.grad(f,x),'numpy')
self.xk = np.array(x0)
self.table = {}

def descend(self):
# unpack variables
f = self.f
x = self.x
x0 = self.x0
T = self.T
g = self.g
# initialize variables
N = 0
x_k = x0
dx = 2*T # can't be zero
x_km1 = .9*x0-.1 # can't equal x0
g_km1 = np.array(g(*x_km1))
N_max = 100 # max iterations
table_data = [[N,x0,np.array(g(*x0)),0]]
while (dx > T and N < N_max) or N < 1:
N += 1 # increment index
g_k = np.array(g(*x_k))
dg_k = g_k - g_km1
dx_k = x_k - x_km1
alpha_k = abs(dx_k.dot(dg_k)/dg_k.dot(dg_k))
x_km1 = x_k # store
x_k = x_k - alpha_k*g_k
# save
table_data.append([N,x_k,g_k,alpha_k])
self.xk = np.vstack((self.xk,x_k))
# store other variables
g_km1 = g_k
dx = np.linalg.norm(x_k - x_km1) # check

self.tabulater(table_data)

def tabulater(self,table_data):
np.set_printoptions(precision=2)
tabulate.LATEX_ESCAPE_RULES={}
self.table['python'] = tabulate(
table_data,
headers=["N","x_k","g_k","alpha"],

)
self.table['latex'] = tabulate(
table_data,
headers=[

"$N$","$\\bm{x}_k$","$\\bm{g}_k$","$\\alpha$"
],
tablefmt="latex_raw",

)

def grad(self,f,x): # cartesian coord's gradient
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return derive_by_array(f(x),x)

First, consider f1.

var('x1 x2')
x = Array([x1,x2])
f1 = lambda x: (x[0]-25)**2 + 13*(x[1]+10)**2
gd = gradient_descent_min(f=f1,x=x,x0=[-50,40],T=1e-8)

Perform the gradient descent.

gd.descend()

---------------------------------------------------------------------------

NameError Traceback
(most recent call last)↪→

/tmp/ipykernel_1136564/2845911865.py in <module>
----> 1 gd.descend()

/tmp/ipykernel_1136564/2142203784.py in
descend(self)↪→

55 g_km1 = g_k
56 dx = np.linalg.norm(x_k - x_km1) #

check↪→

---> 57 self.tabulater(table_data)
58
59 def tabulater(self,table_data):

/tmp/ipykernel_1136564/2142203784.py in
tabulater(self, table_data)↪→

59 def tabulater(self,table_data):
60 np.set_printoptions(precision=2)

---> 61 tabulate.LATEX_ESCAPE_RULES={}
62 self.table['python'] = tabulate(
63 table_data,

NameError: name 'tabulate' is not defined

Print the interesting variables.

print(gd.table['python'])

---------------------------------------------------------------------------

KeyError Traceback
(most recent call last)↪→
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/tmp/ipykernel_1136564/1459049274.py in <module>
----> 1 Latex(gd.table['latex'])

KeyError: 'latex'

Now let’s lambdify the function f1 so we can

plot.

f1_lambda = lambdify((x1,x2),f1(x),'numpy')

Now let’s plot a contour plot with the gradient

descent overlaid.

fig, ax = plt.subplots()
# contour plot
X1 = np.linspace(-100,100,100)
X2 = np.linspace(-50,50,100)
X1, X2 = np.meshgrid(X1,X2)
F1 = f1_lambda(X1,X2)
plt.contourf(X1,X2,F1)
plt.colorbar()
# gradient descent plot
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.collections import LineCollection
xX1 = gd.xk[:,0]
xX2 = gd.xk[:,1]
points = np.array([xX1, xX2]).T.reshape(-1, 1, 2)
segments = np.concatenate(
[points[:-1], points[1:]], axis=1

)
lc = LineCollection(
segments,
cmap=plt.get_cmap('Reds')

)
lc.set_array(np.linspace(0,1,len(xX1))) # color segs
lc.set_linewidth(3)
ax.autoscale(False) # avoid the scatter changing lims
ax.add_collection(lc)
ax.scatter(
xX1,xX2,
zorder=1,
marker="o",
color=plt.cm.Reds(np.linspace(0,1,len(xX1))),
edgecolor='none'

)
plt.show()
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Figure grad.1:Now consider f2.
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A = Matrix([[10,0],[0,20]])
b = Matrix([[1,1]])
def f2(x):
X = Array([x]).tomatrix().T
return 1/2*X.dot(A*X) - b.dot(X)

gd = gradient_descent_min(f=f2,x=x,x0=[50,-40],T=1e-8)

Perform the gradient descent.

gd.descend()

---------------------------------------------------------------------------

NameError Traceback
(most recent call last)↪→

/tmp/ipykernel_1136564/2845911865.py in <module>
----> 1 gd.descend()

/tmp/ipykernel_1136564/2142203784.py in
descend(self)↪→

55 g_km1 = g_k
56 dx = np.linalg.norm(x_k - x_km1) #

check↪→

---> 57 self.tabulater(table_data)
58
59 def tabulater(self,table_data):

/tmp/ipykernel_1136564/2142203784.py in
tabulater(self, table_data)↪→

59 def tabulater(self,table_data):
60 np.set_printoptions(precision=2)

---> 61 tabulate.LATEX_ESCAPE_RULES={}
62 self.table['python'] = tabulate(
63 table_data,

NameError: name 'tabulate' is not defined

Print the interesting variables.

print(gd.table['python'])

---------------------------------------------------------------------------

KeyError Traceback
(most recent call last)↪→

/tmp/ipykernel_1136564/1459049274.py in <module>
----> 1 Latex(gd.table['latex'])
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KeyError: 'latex'

Now let’s lambdify the function f2 so we can

plot.

f2_lambda = lambdify((x1,x2),f2(x),'numpy')

Now let’s plot a contour plot with the gradient

descent overlaid.

fig, ax = plt.subplots()
# contour plot
X1 = np.linspace(-100,100,100)
X2 = np.linspace(-50,50,100)
X1, X2 = np.meshgrid(X1,X2)
F2 = f2_lambda(X1,X2)
plt.contourf(X2,X1,F2)
plt.colorbar()
# gradient descent plot
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.collections import LineCollection
xX1 = gd.xk[:,0]
xX2 = gd.xk[:,1]
points = np.array([xX1, xX2]).T.reshape(-1, 1, 2)
segments = np.concatenate(
[points[:-1], points[1:]], axis=1

)
lc = LineCollection(
segments,
cmap=plt.get_cmap('Reds')

)
lc.set_array(np.linspace(0,1,len(xX1))) # color segs
lc.set_linewidth(3)
ax.autoscale(False) # avoid the scatter changing lims
ax.add_collection(lc)
ax.scatter(
xX1,xX2,
zorder=1,
marker="o",
color=plt.cm.Reds(np.linspace(0,1,len(xX1))),
edgecolor='none'

)
plt.show()

. Python code in this section was generated from a Jupyter
notebook named gradient_descent.ipynb with a python3
kernel.
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constraints

linear programming problem

maximize

constrained

linear

feasible solution

optimal

hyperplane

opt.lin Constrained linear optimization

Consider a linear objective function f : Rn → R
with variables xi in vector x and coefficients ci

in vector c:

f(x) = c · x (1)

subject to the linear constraints—restrictions on

xi—

Ax 6 a, (2a)

Bx = b, and (2b)

l 6 x 6 u (2c)

where A and B are constant matrices and

a,b, l,u are n-vectors. This is one formulation

of what is called a linear programming problem.

Usually we want to maximize f over the

constraints. Such problems frequently arise

throughout engineering, for instance in

manufacturing, transportation, operations, etc.

They are called constrained because there are

constraints on x; they are called linear because

the objective function and the constraints are

linear.

We call a pair (x, f(x)) for which x satisfies Eq. 2

a feasible solution. Of course, not every feasible

solution is optimal: a feasible solution is optimal

iff there exists no other feasible solution for

which f is greater (assuming we’re maximizing).

We call the vector subspace of feasible solutions

S ⊂ Rn.

Feasible solutions form a polytope

Consider the effect of the constraints. Each of

the equalities and inequalities defines a linear

hyperplane in Rn (i.e. a linear subspace of

dimension n− 1): either as a boundary of S

(inequality) or as a restriction of S to the

hyperplane. When joined, these hyperplanes

are the boundary of S (equalities restrict S to
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flat

polytope

vertices

basic feasible solutions

level set

an optimal solution occurs at a vertex of S

lower dimension). So we see that each of the

boundaries of S is flat, which makes S a polytope

(in R2, a polygon). What makes this especially

interesting is that polytopes have vertices where

the hyperplanes intersect. Solutions at the

vertices are called basic feasible solutions.

Only the vertices matter

Our objective function f is linear, so for some

constant h, f(x) = h defines a level set that is

itself a hyperplane H in Rn. If this hyperplane

intersects S at a point x, (x, f(x) = h) is the

corresponding solution. There are three

possibilities when H intersects S:

1. H ∩ S is a vertex of S,
2. H ∩ S is a boundary hyperplane of S, or
3. H ∩ S slices through the interior of S.

However, this third option implies that there

exists a level set G corresponding to f(x) = g

such that G intersects S and g > h, so solutions

on H ∩ S are not optimal. (We have not proven

this, but it may be clear from our progression.)

We conclude that either the first or second case

must be true for optimal solutions. And notice

that in both cases, a (potentially optimal)

solution occurs at at least one vertex. The key

insight, then, is that an optimal solution occurs

at a vertex of S.

This means we don’t need to search all of S, or

even its boundary: we need only search the

vertices. Helpful as this is, it restricts us down

to
(

n
# constraints

)
potentially optimal

solutions—usually still too many to search in a

naïve way. In Lec. opt.simplex, this is mitigated

by introducing a powerful searching method.
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simplex algorithm

4. Another Python package pulp (PuLP) is probably more popular for
linear programming; however, we choose scipy.optimize because it
has applications beyond linear programming.

opt.simplex The simplex algorithm

The simplex algorithm (or “method”) is an

iterative technique for finding an optimal

solution of the linear programming problem of

Eqs. 1 and 2. The details of the algorithm are

somewhat involved, but the basic idea is to start

at a vertex of the feasible solution space S and

traverse an edge of the polytope that leads to

another vertex with a greater value of f. Then,

repeat this process until there is no neighboring

vertex with a greater value of f, at which point

the solution is guaranteed to be optimal.

Rather than present the details of the algorithm,

we choose to show an example using Python.

There have been some improvements on the

original algorithm that have been implemented

into many standard software packages,

including Python’s scipy package
(Pauli Virtanen andothers. ?SciPy

1.0–Fundamental Algorithms for Scientific

Computing in Python? inarXiv e-prints:

arXiv:1907.10121 [july 2019], arXiv:1907.10121)

module scipy.optimize.4

Example opt.simplex-1 re: simplex method using scipy.optimize

Maximize the objective function

f(x) = c · x (1a)

for x ∈ R2 and

c =
[
5 2

]>
(1b)

subject to constraints

0 6 x1 6 10 (2a)

−5 6 x2 6 15 (2b)

4x1 + x2 6 40 (2c)

x1 + 3x2 6 35 (2d)

−8x1 − x2 > −75. (2e)

https://pypi.org/project/PuLP/
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First, load some Python packages.

from scipy.optimize import linprog
import numpy as np
import matplotlib.pyplot as plt
from IPython.display import display, Markdown, Latex

Encoding the problem

Before we can use linprog, we must first

encode Eqs. 1 and 2 into a form linprog will

recognize. We begin with f, which we can write

as c · xwith the coefficients of c as follows.

c = [-5, -2] # negative to find max

We’ve negated each constant because linprog
minimizes f and we want to maximize f. Now

let’s encode the inequality constraints. We

will write the left-hand side coefficients in the

matrix A and the right-hand-side values in

vector a such that

Ax 6 a. (3)

Notice that one of our constraint inequalities is

> instead of 6. We can flip this by multiplying

the inequality by −1. We use simple lists to

encode A and a.

A = [
[4, 1],
[1, 3],
[8, 1]

]
a = [40, 35, 75]

Now we need to define the lower l and upper

u bounds of x. The function linprog expects

these to be in a single list of lower- and upper-

bounds of each xi.

lu = [
(0, 10),
(-5,15),

]
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We want to keep track of each step linprog
takes. We can access these by defining a

function callback, to be passed to linprog.

x = [] # for storing the steps
def callback(res): # called at each step

global x
print(f"nit = {res.nit}, x_k = {res.x}")
x.append(res.x.copy()) # store

Now we need to call linprog. We don’t have

any equality constraints, so we need only use

the keyword arguments A_ub=A and b_ub=a.
For demonstration purposes, we tell it to use

the 'simplex' method, which is not as good as
its other methods, which use better algorithms

based on the simplex.

res = linprog(
c,
A_ub=A,
b_ub=a,
bounds=lu,
method='simplex',
callback=callback

)

x = np.array(x)

nit = 0, x_k = [ 0. -5.]
nit = 1, x_k = [10. -5.]
nit = 2, x_k = [8.75 5. ]
nit = 3, x_k = [7.72727273 9.09090909]
nit = 4, x_k = [7.72727273 9.09090909]
nit = 5, x_k = [7.72727273 9.09090909]
nit = 5, x_k = [7.72727273 9.09090909]

So the optimal solution (x, f(x)) is as follows.

print(f"optimum x: {res.x}")
print(f"optimum f(x): {-res.fun}")

optimum x: [7.72727273 9.09090909]
optimum f(x): 56.81818181818182

The last point was repeated

1. once because there was no adjacent vertex

with greater f(x) and
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2. twice because the algorithm calls

‘callback‘ twice on the last step.

Plotting

When the solution space is in R2, it is helpful

to graphically represent the solution space,

constraints, and the progression of the

algorithm. We begin by defining the inequality

lines from A and a over the bounds of x1.

n = len(c) # number of variables x
m = np.shape(A)[0] # number of inequality constraints
x2 = np.empty([m,2])
for i in range(0,m):
x2[i,:] = -A[i][0]/A[i][1]*np.array(lu[0]) + a[i]/A[i][1]

Now we plot a contour plot of f over the

bounds of x1 and x2 and overlay the inequality

constraints and the steps of the algorithm

stored in x.

lu_array = np.array(lu)
fig, ax = plt.subplots()
mpl.rcParams['lines.linewidth'] = 3
# contour plot
X1 = np.linspace(*lu_array[0],100)
X2 = np.linspace(*lu_array[1],100)
X1, X2 = np.meshgrid(X1,X2)
F2 = -c[0]*X1 + -c[1]*X2 # negative because max hack
con = ax.contourf(X1,X2,F2)
cbar = fig.colorbar(con,ax=ax)
cbar.ax.set_ylabel('objective function')
# bounds on x
un = np.array([1,1])
opts = {'c':'w','label':None,'linewidth':6}
plt.plot(lu_array[0],lu_array[1,0]*un,**opts)
plt.plot(lu_array[0],lu_array[1,1]*un,**opts)
plt.plot(lu_array[0,0]*un,lu_array[1],**opts)
plt.plot(lu_array[0,1]*un,lu_array[1],**opts)
# inequality constraints
for i in range(0,m):
p, = plt.plot(lu[0],x2[i,:],c='w')

p.set_label('constraint')
# steps
plt.plot(
x[:,0],x[:,1],
'-o',c='r',
clip_on=False,zorder=20,
label='simplex'
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)
plt.ylim(lu_array[1])
plt.xlabel('$x_1$')
plt.ylabel('$x_2$')
plt.legend()
plt.show()
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. Python code in this section was generated from a Jupyter
notebook named simplex_linear_programming.ipynb with a
python3 kernel.
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5. Barzilai and Borwein, ?Two-Point Step Size Gradient Methods?

6. ibidem.

opt.exe Exercises for Chapter opt

Exercise opt.chortle

Consider the function f : R2 → R, defined as

f(x) = cos(x1 − ex2 + 2) sin(x21/4− x22/3+ 4) (1)

Use the method of Barzilai and Borwein5

starting at x0 = (1, 1) to find a minimum of the

function.

Exercise opt.cummerbund

Consider the functions (a) f1 : R2 → R and (b)

f2 : R2 → R defined as

f1(x) = 4(x1 − 16)2 + (x2 + 64)2 + x1 sin2 x1 (2)

f2(x) =
1

2
x ·Ax− b · x (3)

where

A =

[
5 0

0 15

]
and (4a)

b =
[
−2 1

]>
. (4b)

Use the method of Barzilai and Borwein6

starting at some x0 to find a minimum of each

function.

Exercise opt.melty

Maximize the objective function

f(x) = c · x (5a)

for x ∈ R3 and

c =
[
3 −8 1

]>
(5b)

subject to constraints

0 6 x1 6 20 (6a)

−5 6 x2 6 0 (6b)

5 6 x3 6 17 (6c)

x1 + 4x2 6 50 (6d)

2x1 + x3 6 43 (6e)

−4x1 + x2 − 5x3 > −99. (6f)
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Exercise opt.lateness

Find the minimum of the function,

f(x) = x21 + x22 −
x1
10

+ cos(2x1),

starting at the location x = [−0.5, 0.75]T , and

with a constant value α = 0.01.

1. What is the location of the minimum you

found?

2. Is this location the global minimum?



1. As is customary, we frequently say “system” when we mean
“mathematical systemmodel.” Recall that multiple models may be used
for any given physical system, depending on what one wants to know.

nlin

Nonlinear analysis

1 The ubiquity of near-linear systems and the

tools we have for analyses thereof can

sometimes give the impression that nonlinear

systems are exotic or even downright

flamboyant. However, a great many systems1

important for a mechanical engineer are

frequently hopelessly nonlinear. Here are a

some examples of such systems.

• A robot arm.

• Viscous fluid flow (usually modelled by

the navier-stokes equations).

•

• Anything that “fills up” or “saturates.”

• Nonlinear optics.

• Einstein’s field equations (gravitation in

general relativity).

• Heat radiation and nonlinear heat

conduction.

• Fracture mechanics.

•

2 Lest we think this is merely an

inconvenience, we should keep in mind that it is

actually the nonlinearity that makes many

phenomena useful. For instance, the

depends on the nonlinearity of its

optics. Similarly, transistors and the digital

circuits made thereby (including the

microprocessor) wouldn’t function if their

physics were linear.
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2. S.H. Strogatz and M. Dichter. Nonlinear Dynamics and Chaos.
Second. Studies in Nonlinearity. Avalon Publishing, 2016. isbn:
9780813350844.

3. W. RichardKolk andRobert A. Lerman. Nonlinear SystemDynamics.
1 edition. Springer US, 1993. isbn: 978-1-4684-6496-2.

3 In this chapter, we will see some ways to

formulate, characterize, and simulate nonlinear

systems. Purely are

few for nonlinear systems. Most are beyond the

scope of this text, but we describe a few, mostly

in Lec. nlin.char. Simulation via numerical

integration of nonlinear dynamical equations is

the most accessible technique, so it is

introduced.

4 We skip a discussion of linearization; of

course, if this is an option, it is preferable.

Instead, we focus on the

.

5 For a good introduction to nonlinear

dynamics, see Strogatz and Dichter.2 A more

engineer-oriented introduction is Kolk and

Lerman.3



nlin Nonlinear analysis ss Nonlinear state-space models p. 1

nonlinear state-space models

autonomous system

nonautonomous system

4. � Strogatz and Dichter, Nonlinear Dynamics and Chaos.

equilibrium state

stationary point

nlin.ss Nonlinear state-space models

1 A state-space model has the general form

dx
dt = f(x,u, t) (1a)

y = (1b)

where f and g are vector-valued functions that

depend on the system. Nonlinear state-space

models are those for which f is a

functional of either x or u.

For instance, a state variable x1 might appear as

x21 or two state variables might combine as x1x2

or an input u1 might enter the equations as

logu1.

Autonomous and nonautonomous systems

2 An autonomous system is one for which

f(x), with neither time nor input appearing

explicitly. A nonautonomous system is one for

which either t or u do appear explicitly in f. It

turns out that we can always write

nonautonomous systems as autonomous by

substituting in u(t) and introducing an extra

for t4.

3 Therefore, without loss of generality, we will

focus on ways of analyzing autonomous

systems.

Equilibrium

4 An equilibrium state (also called a

) x is one for which

dx/dt = 0. In most cases, this occurs only when

the input u is a constant u and, for time-varying

systems, at a given time t. For autonomous

systems, equilibrium occurs when the following

holds:

(2)

This is a system of nonlinear algebraic

equations, which can be challenging to solve for
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x. However, frequently, several solutions—that

is, equilibrium states—do exist.
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system order

nlin.char Nonlinear system characteristics

1 Characterizing nonlinear systems can be

challenging without the tools developed for

system characterization.

However, there are ways of characterizing

nonlinear systems, and we’ll here explore a few.

Those in-common with linear systems

2 As with linear systems, the system order is

either the number of state-variables required to

describe the system or, equivalently, the

highest-order in a single

scalar differential equation describing the

system.

3 Similarly, nonlinear systems can have state

variables that depend on alone or

those that also depend on (or

some other independent variable). The former

lead to ordinary differential equations (ODEs)

and the latter to partial differential equations

(PDEs).

4 Equilibrium was already considered in

Lec. nlin.ss.

Stability

5 In terms of system performance, perhaps no

other criterion is as important as

.

Definition nlin.1: Stability

If x is perturbed from an equilibrium state x, the

response x(t) can:

1. asymptotically return to x (asymptotically

),

2. diverge from x ( ), or

3. remain perturned or oscillate

about x with a constant amplitude

( stable).
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Lyapunov stability theory

5. � William L Brogan. Modern Control Theory. Third. Prentice Hall,
1991, Ch. 10.

6. � A. Choukchou-Braham andothers. Analysis and Control of
Underactuated Mechanical Systems. SpringerLink : Bücher. Springer
International Publishing, 2013. isbn: 9783319026367, App. A.

Notice that this definition is actually local:

stability in the neighborhood of one equilibrium

may not be the same as in the neighborhood of

another.

6 Other than nonlinear systems’ lack of linear

systems’ eigenvalues, poles, and roots of the

characteristic equation from which to compute

it, the primary difference between the stability

of linear and nonlinear systems is that nonlinear

system stability is often difficult to establish

. Using a linear system’s

eigenvalues, it is straightforward to establish

stable, unstable, and marginally stable

subspaces of state-space (via transforming to an

eigenvector basis). For nonlinear systems, no

such method exists. However, we are not

without tools to explore nonlinear system

stability. One mathematical tool to consider is

, which is

beyond the scope of this course, but has good

treatments in5 and6.

Qualities of equilibria

7 Equilibria (i.e. stationary points) come in a

variety of qualities. It is instructive to consider

the first-order differential equation in state

variable with real constant :

x ′ = rx− x3. (1)

If we plot x ′ versus x for different values of r,

we obtain the plots of Fig. char.1.

8 By definition, equilibria occur when x ′ = 0,

so the x-axis crossings of Fig. char.1 are

equilibria. The blue arrows on the x-axis show

the of state change x ′,

quantified by the plots. For both (a) and (b),

only one equilibrium exists: x = 0. Note that the

blue arrows in both plots point toward the

equilibrium. In such cases—that is, when a

exists around an
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x

x ′

(a) r < 0

x

x ′

(b) r = 0

x

x ′

(c) r > 0

Figure char.1: plots of x ′ versus x for Eq. 1.

attractor

sink
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bifurcation

bifurcation diagram

repeller

source

unstable

saddle

equilibrium for which state changes point

toward the equilibrium—the equilibrium is

called an or .

Note that attractors are .

9 Now consider (c) of Fig. char.1. When r > 0,

three equilibria emerge. This change of the

number of equilibria with the changing of a

parameter is called a . A

plot of bifurcations versus the parameter is

called a bifurcation diagram. The x = 0

equilibrium now has arrows that point

from it. Such an equilibrium is

called a or and

is . The other two equilibria

here are (stable) attractors. Consider a very

small initial condition x(0) = ε. If ε > 0, the

repeller pushes away x and the positive

attractor pulls x to itself. Conversely, if ε < 0,

the repeller again pushes away x and the

negative attractor pulls x to itself.

10 Another type of equilibrium is called the

: one which acts as an attractor

along some lines and as a repeller along others.

We will see this type in the following example.

Example nlin.char-1 re: Saddle bifurcation

Consider the dynamical equation

x ′ = x2 + r (2)
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with r a real constant. Sketch x ′ vs x for

negative, zero, and positive r. Identify and

classify each of the equilibria.
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nlin.sim Nonlinear system simulation
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nlin.pysim Simulating nonlinear systems in Python

Example nlin.pysim-1 re: a nonlinear unicycle

asdf

First, load some Python packages.

import numpy as np
import sympy as sp
from scipy.integrate import solve_ivp
import matplotlib.pyplot as plt
from IPython.display import display, Markdown, Latex

The state equation can be encoded via the

following function f.

def f(t, x, u, c):
dxdt = [

x[3]*np.cos(x[2]),
x[3]*np.sin(x[2]),
x[4],
1/c[0] * u(t)[0],
1/c[1] * u(t)[1]

]
return dxdt

The input function u must also be defined.

def u(t):
return [

15*(1+np.cos(t)),
25*np.sin(3*t)

]

# %% Define time spans, initial values, and constants
tspan = np.linspace(0, 50, 300)
xinit = [0,0,0,0,0]
mass = 10
inertia = 10
c = [mass,inertia]

# %% Solve differential equation
sol = solve_ivp(

lambda t, x: f(t, x, u, c),
[tspan[0], tspan[-1]],
xinit,
t_eval=tspan

)
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Let’s first plot the trajectory and instantaneous

velocity.

−75 −50 −25 0 25 50 75 100
x

−75

−50

−25

0

25

50

75

100

y

Figure pysim.1:

xp = sol.y[3]*np.cos(sol.y[2])
yp = sol.y[3]*np.sin(sol.y[2])
p = plt.figure();
plt.plot(sol.y[0],sol.y[1])
plt.quiver(sol.y[0],sol.y[1],xp,yp)
plt.xlabel('$x$')
plt.ylabel('$y$')
plt.show()

. Python code in this section was generated from a Jupyter
notebook named horcrux.ipynbwith a python3 kernel.
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A.01 Gaussian distribution table

Below are plots of the Gaussian probability

density function f and cumulative distribution

function Φ. Below them is Table guass.1 of CDF

values.

zb
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Figure guass.1: the Gaussian PDF and CDF for z-scores.

Table guass.1: z-score tableΦ(zb) = P(z ∈ (−∞, zb]).
zb .�0 .�1 .�2 .�3 .�4 .�5 .�6 .�7 .�8 .�9

-3.4� 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002

-3.3� 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003

-3.2� 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005

-3.1� 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007

-3.0� 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010

-2.9� 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014

-2.8� 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019

-2.7� 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026

-2.6� 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036

-2.5� 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048

-2.4� 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064

-2.3� 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084

-2.2� 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110

-2.1� 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
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Table guass.1: z-score tableΦ(zb) = P(z ∈ (−∞, zb]).
zb .�0 .�1 .�2 .�3 .�4 .�5 .�6 .�7 .�8 .�9

-2.0� 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183

-1.9� 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233

-1.8� 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294

-1.7� 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367

-1.6� 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455

-1.5� 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559

-1.4� 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681

-1.3� 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823

-1.2� 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985

-1.1� 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170

-1.0� 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379

-0.9� 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611

-0.8� 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867

-0.7� 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148

-0.6� 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451

-0.5� 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776

-0.4� 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121

-0.3� 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483

-0.2� 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859

-0.1� 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247

-0.0� 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641

0.0� 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1� 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2� 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3� 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4� 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5� 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6� 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7� 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.8� 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9� 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0� 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1� 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

1.2� 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

1.3� 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4� 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5� 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6� 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7� 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.8� 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

1.9� 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0� 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1� 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.2� 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

2.3� 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

2.4� 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5� 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6� 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

2.7� 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

2.8� 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

2.9� 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0� 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

3.1� 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
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Table guass.1: z-score tableΦ(zb) = P(z ∈ (−∞, zb]).
zb .�0 .�1 .�2 .�3 .�4 .�5 .�6 .�7 .�8 .�9

3.2� 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995

3.3� 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997

3.4� 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
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A.02 Student’s t-distribution table

Table t.1: two-tail inverse student’s t-distribution table.

percent probability

ν 60.0 66.7 75.0 80.0 87.5 90.0 95.0 97.5 99.0 99.5 99.9

1 0.325 0.577 1.000 1.376 2.414 3.078 6.314 12.706 31.821 63.657 318.31
2 0.289 0.500 0.816 1.061 1.604 1.886 2.920 4.303 6.965 9.925 22.327
3 0.277 0.476 0.765 0.978 1.423 1.638 2.353 3.182 4.541 5.841 10.215
4 0.271 0.464 0.741 0.941 1.344 1.533 2.132 2.776 3.747 4.604 7.173
5 0.267 0.457 0.727 0.920 1.301 1.476 2.015 2.571 3.365 4.032 5.893
6 0.265 0.453 0.718 0.906 1.273 1.440 1.943 2.447 3.143 3.707 5.208
7 0.263 0.449 0.711 0.896 1.254 1.415 1.895 2.365 2.998 3.499 4.785
8 0.262 0.447 0.706 0.889 1.240 1.397 1.860 2.306 2.896 3.355 4.501
9 0.261 0.445 0.703 0.883 1.230 1.383 1.833 2.262 2.821 3.250 4.297
10 0.260 0.444 0.700 0.879 1.221 1.372 1.812 2.228 2.764 3.169 4.144
11 0.260 0.443 0.697 0.876 1.214 1.363 1.796 2.201 2.718 3.106 4.025
12 0.259 0.442 0.695 0.873 1.209 1.356 1.782 2.179 2.681 3.055 3.930
13 0.259 0.441 0.694 0.870 1.204 1.350 1.771 2.160 2.650 3.012 3.852
14 0.258 0.440 0.692 0.868 1.200 1.345 1.761 2.145 2.624 2.977 3.787
15 0.258 0.439 0.691 0.866 1.197 1.341 1.753 2.131 2.602 2.947 3.733
16 0.258 0.439 0.690 0.865 1.194 1.337 1.746 2.120 2.583 2.921 3.686
17 0.257 0.438 0.689 0.863 1.191 1.333 1.740 2.110 2.567 2.898 3.646
18 0.257 0.438 0.688 0.862 1.189 1.330 1.734 2.101 2.552 2.878 3.610
19 0.257 0.438 0.688 0.861 1.187 1.328 1.729 2.093 2.539 2.861 3.579
20 0.257 0.437 0.687 0.860 1.185 1.325 1.725 2.086 2.528 2.845 3.552
21 0.257 0.437 0.686 0.859 1.183 1.323 1.721 2.080 2.518 2.831 3.527
22 0.256 0.437 0.686 0.858 1.182 1.321 1.717 2.074 2.508 2.819 3.505
23 0.256 0.436 0.685 0.858 1.180 1.319 1.714 2.069 2.500 2.807 3.485
24 0.256 0.436 0.685 0.857 1.179 1.318 1.711 2.064 2.492 2.797 3.467
25 0.256 0.436 0.684 0.856 1.178 1.316 1.708 2.060 2.485 2.787 3.450
26 0.256 0.436 0.684 0.856 1.177 1.315 1.706 2.056 2.479 2.779 3.435
27 0.256 0.435 0.684 0.855 1.176 1.314 1.703 2.052 2.473 2.771 3.421
28 0.256 0.435 0.683 0.855 1.175 1.313 1.701 2.048 2.467 2.763 3.408
29 0.256 0.435 0.683 0.854 1.174 1.311 1.699 2.045 2.462 2.756 3.396
30 0.256 0.435 0.683 0.854 1.173 1.310 1.697 2.042 2.457 2.750 3.385
35 0.255 0.434 0.682 0.852 1.170 1.306 1.690 2.030 2.438 2.724 3.340
40 0.255 0.434 0.681 0.851 1.167 1.303 1.684 2.021 2.423 2.704 3.307
45 0.255 0.434 0.680 0.850 1.165 1.301 1.679 2.014 2.412 2.690 3.281
50 0.255 0.433 0.679 0.849 1.164 1.299 1.676 2.009 2.403 2.678 3.261
55 0.255 0.433 0.679 0.848 1.163 1.297 1.673 2.004 2.396 2.668 3.245
60 0.254 0.433 0.679 0.848 1.162 1.296 1.671 2.000 2.390 2.660 3.232∞ 0.253 0.431 0.674 0.842 1.150 1.282 1.645 1.960 2.326 2.576 3.090



tbltx

Fourier and Laplace tables



tbltx Fourier and Laplace tables lap Laplace transforms p. 1

B.01 Laplace transforms

Table lap.1 is a table with functions of time f(t)

on the left and corresponding Laplace

transforms L(s) on the right. Where applicable,

s = σ+ jω is the Laplace transform variable, T is

the time-domain period, ω02π/T is the

corresponding angular frequency, j =
√
−1,

a ∈ R+, and b, t0 ∈ R are constants.

Table lap.1: Laplace transform identities.

function of time t function of Laplace s

a1f1(t) + a2f2(t) a1F1(s) + a2F2(s)

f(t− t0) F(s)e−t0s

f ′(t) sF(s) − f(0)

dnf(t)

dtn
snF(s) + s(n−1)f(0) + s(n−2)f ′(0) + · · ·+ f(n−1)(0)

ˆ t

0

f(τ)dτ
1

s
F(s)

tf(t) −F ′(s)

f1(t) ∗ f2(t) =
ˆ ∞
−∞ f1(τ)f2(t− τ)dτ F1(s)F2(s)

δ(t) 1

us(t) 1/s

ur(t) 1/s2

tn−1/(n− 1)! 1/sn

e−at 1

s+ a

te−at 1

(s+ a)2
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1

(n− 1)!t
n−1e−at 1

(s+ a)n

1

a− b
(eat − ebt)

1

(s− a)(s− b)
(a 6= b)

1

a− b
(aeat − bebt)

s

(s− a)(s− b)
(a 6= b)

sinωt ω

s2 +ω2

cosωt s

s2 +ω2

eat sinωt ω

(s− a)2 +ω2

eat cosωt s− a

(s− a)2 +ω2
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B.02 Fourier transforms

Table four.1 is a table with functions of time f(t)

on the left and corresponding Fourier

transforms F(ω) on the right. Where applicable,

T is the time-domain period, ω02π/T is the

corresponding angular frequency, j =
√
−1,

a ∈ R+, and b, t0 ∈ R are constants.

Furthermore, fe and f0 are even and odd

functions of time, respectively, and it can be

shown that any function f can be written as the

sum f(t) = fe(t) + f0(t). (Hsu1967)

Table four.1: Fourier transform identities.

function of time t function of frequency ω

a1f1(t) + a2f2(t) a1F1(ω) + a2F2(ω)

f(at)
1

|a|
F(ω/a)

f(−t) F(−ω)

f(t− t0) F(ω)e−jωt0

f(t) cosω0t
1

2
F(ω−ω0) +

1

2
F(ω+ω0)

f(t) sinω0t
1

j2
F(ω−ω0) −

1

j2
F(ω+ω0)

fe(t) Re F(ω)

f0(t) j Im F(ω)

F(t) 2πf(−ω)

f ′(t) jωF(ω)

dnf(t)

dtn
(jω)nF(ω)
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ˆ t

−∞ f(τ)dτ
1

jω
F(ω) + πF(0)δ(ω)

−jtf(t) F ′(ω)

(−jt)nf(t)
dnF(ω)

dωn

f1(t) ∗ f2(t) =
ˆ ∞
−∞ f1(τ)f2(t− τ)dτ F1(ω)F2(ω)

f1(t)f2(t)
1

2π
F1(ω) ∗ F2(ω) =

1

2π

ˆ ∞
−∞ F1(α)F2(ω− α)dα

e−atus(t)
1

jω+ a

e−a|t| 2a

a2 +ω2

e−at2
√
π/a e−ω2/(4a)

1 for |t| < a/2, else 0
a sin(aω/2)
aω/2

te−atus(t)
1

(a+ jω)2

tn−1

(n− 1)!e
−at)nus(t)

1

(a+ jω)n

1

a2 + t2
π

a
e−a|ω|

δ(t) 1

δ(t− t0) e−jωt0

us(t) πδ(ω) +
1

jω

us(t− t0) πδ(ω) +
1

jω
e−jωt0

1 2πδ(ω)

t 2πjδ ′(ω)

tn 2πjn
dnδ(ω)

dωn

ejω0t 2πδ(ω−ω0)
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cosω0t πδ(ω−ω0) + πδ(ω+ω0)

sinω0t −jπδ(ω−ω0) + jπδ(ω+ω0)

us(t) cosω0t
jω

ω2
0 −ω2

+
π

2
δ(ω−ω0) +

π

2
δ(ω+ω0)

us(t) sinω0t
ω0

ω2
0 −ω2

+
π

2j
δ(ω−ω0) −

π

2j
δ(ω+ω0)

tus(t) jπδ ′(ω) − 1/ω2

1/t πj− 2πjus(ω)

1/tn
(−jω)n−1

(n− 1)! (πj− 2πjus(ω))

sgn t 2

jω∞∑
n=−∞ δ(t− nT) ω0

∞∑
n=−∞ δ(ω− nω0)
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C.01 Quadratic forms

The solution to equations of the form

ax2 + bx+ c = 0 is

x =
−b±

√
b2 − 4ac

2a
. (1)

Completing the square

This is accomplished by re-writing the quadratic

formula in the form of the left-hand-side (LHS)

of this equality, which describes factorization

x2 + 2xh+ h2 = (x+ h)2. (2)
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C.02 Trigonometry

Triangle identities

With reference to the below figure, the law of

sines is

sin α

a
=
sin β

b
=
sin γ

c
(1)

and the law of cosines is

c2 = a2 + b2 − 2ab cos γ (2a)

b2 = a2 + c2 − 2ac cos β (2b)

a2 = c2 + b2 − 2cb cos α (2c)

b

c
a

α γ

β

Reciprocal identities

cscu =
1

sinu (3a)

secu =
1

cosu (3b)

cotu =
1

tanu (3c)

Pythagorean identities

1 = sin2 u+ cos2 u (4a)

sec2 u = 1+ tan2 u (4b)

csc2 u = 1+ cot2 u (4c)
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Co-function identities

sin
(π
2
− u

)
= cosu (5a)

cos
(π
2
− u

)
= sinu (5b)

tan
(π
2
− u

)
= cotu (5c)

csc
(π
2
− u

)
= secu (5d)

sec
(π
2
− u

)
= cscu (5e)

cot
(π
2
− u

)
= tanu (5f)

Even-odd identities

sin(−u) = − sinu (6a)

cos(−u) = cosu (6b)

tan(−u) = − tanu (6c)

Sum-difference formulas (AM or lock-in)

sin(u± v) = sinu cos v± cosu sin v (7a)

cos(u± v) = cosu cos v∓ sinu sin v (7b)

tan(u± v) = tanu± tan v
1∓ tanu tan v (7c)

Double angle formulas

sin(2u) = 2 sinu cosu (8a)

cos(2u) = cos2 u− sin2 u (8b)

= 2 cos2 u− 1 (8c)

= 1− 2 sin2 u (8d)

tan(2u) = 2 tanu
1− tan2 u

(8e)

Power-reducing or half-angle formulas

sin2 u =
1− cos(2u)

2
(9a)

cos2 u =
1+ cos(2u)

2
(9b)

tan2 u =
1− cos(2u)
1+ cos(2u) (9c)
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Sum-to-product formulas

sinu+ sin v = 2 sin u+ v

2
cos u− v

2
(10a)

sinu− sin v = 2 cos u+ v

2
sin u− v

2
(10b)

cosu+ cos v = 2 cos u+ v

2
cos u− v

2
(10c)

cosu− cos v = −2 sin u+ v

2
sin u− v

2
(10d)

Product-to-sum formulas

sinu sin v = 1

2
[cos(u− v) − cos(u+ v)] (11a)

cosu cos v = 1

2
[cos(u− v) + cos(u+ v)] (11b)

sinu cos v = 1

2
[sin(u+ v) + sin(u− v)] (11c)

cosu sin v = 1

2
[sin(u+ v) − sin(u− v)] (11d)

Two-to-one formulas

A sinu+ B cosu = C sin(u+ φ) (12a)

= C cos(u+ψ) where (12b)

C =
√
A2 + B2 (12c)

φ = arctan B
A

(12d)

ψ = − arctan A
B

(12e)
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adjoint

C.03 Matrix inverses

This is a guide to inverting 1× 1, 2× 2, and n×n
matrices.

Let A be the 1× 1matrix

A =
[
a
]
.

The inverse is simply the reciprocal:

A−1 =
[
1/a

]
.

Let B be the 2× 2matrix

B =

[
b11 b12

b21 b22

]
.

It can be shown that the inverse follows a

simple pattern:

B−1 =
1

detB

[
b22 −b12

−b21 b11

]

=
1

b11b22 − b12b21

[
b22 −b12

−b21 b11

]
.

Let C be an n× nmatrix. It can be shown that
its inverse is

C−1 =
1

detC adjC,

where adj is the adjoint of C.
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C.04 Laplace transforms

The definition of the one-side Laplace and

inverse Laplace transforms follow.

Definition C.1: Laplace transforms (one-sided)

Laplace transform L:

L(y(t)) = Y(s) =

ˆ ∞
0

y(t)e−stdt. (1)

Inverse Laplace transform L−1:

L−1(Y(s)) = y(t) =
1

2πj

ˆ σ+j∞
σ−j∞ Y(s)estds. (2)

See Table lap.1 for a list of properties and

common transforms.
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Euler’s formula

D.01 Euler’s formulas

Euler’s formula is our bridge back-and forth

between trigonomentric forms (cos θ and sin θ)
and complex exponential form (ejθ):

ejθ = cos θ+ j sin θ. (1)

Here are a few useful identities implied by

Euler’s formula.

e−jθ = cos θ− j sin θ (2a)

cos θ = Re (ejθ) (2b)

=
1

2

(
ejθ + e−jθ

)
(2c)

sin θ = Im (ejθ) (2d)

=
1

j2

(
ejθ − e−jθ

)
. (2e)
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