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prob.bay Bayes’ theorem

Given two events A and B, Bayes’ theorem (aka

Bayes’ rule) states that

P(A | B) = P(B | A)
P(A)

P(B)
. (1)

Sometimes this is written

P(A | B) =
P(B | A)P(A)

P(B | A)P(A) + P(B | ¬A)P(¬A)
(2)

=
1

1+
P(B | ¬A)

P(B | A)
· P(¬A)
P(A)

. (3)

This is a useful theorem for determining a test’s

effectiveness. If a test is performed to determine

whether an event has occurred, we might as

questions like “if the test indicates that the event

has occurred, what is the probability it has

actually occurred?” Bayes’ theorem can help

compute an answer.

Testing outcomes

The test can be either positive or negative ,

meaning it can either indicate or not indicate

that A has occurred. Furthermore, this result

can be either true☺ or false☹.

A ¬A

positive (B) true ☺ false ☹

negative (¬B) false ☹ true ☺

Table bay.1: test outcome B
for eventA.

There

are four options,

then. Consider an

event A and an event

that is a test result

B indicating that

event A has occurred.

Table bay.1 shows

these four possible test outcomes. The event A

occurring can lead to a true positive or a false

negative, whereas ¬A can lead to a true negative

or a false positive.

Terminology is important, here.

• P({true positive}) = P(B | A), aka

sensitivity or detection rate,
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specificity

posterior probability

prior probability

• P({true negative}) = P(¬B | ¬A), aka

specificity,

• P({false positive}) = P(B | ¬A),

• P({false negative}) = P(¬B | A).

Clearly, the desirable result for any test is that it

is true. However, no test is true 100 percent of

the time. So sometimes it is desirable to err on

the side of the false positive, as in the case of a

medical diagnostic. Other times, it is more

desirable to err on the side of a false negative, as

in the case of testing for defects in manufactured

balloons (when a false negative isn’t a big deal).

Posterior probabilities

Returning to Bayes’ theorem, we can evaluate

the posterior probability P(A | B) of the event A

having occurred given that the test B is positive,

given information that includes the prior

probability P(A) of A. The form in Eq. 2 or (3) is

typically useful because it uses commonly

known test probabilities: of the true positive

P(B | A) and of the false positive P(B | ¬A). We

calculate P(A | B) when we want to interpret test

results.

Some interesting results can be found from this.

For instance, if we let P(B | A) = P(¬B | ¬A)

(sensitivity equal specificity) and realize that

P(B | ¬A) + P(¬B | ¬A) = 1 (when ¬A, either B or

¬B), we can derive the expression

P(B | ¬A) = 1− P(B | A). (4)

Using this and P(¬A) = 1− P(A) in Eq. 3 gives

(recall we’ve assumed sensitivity equals

specificity!)

P(A | B) =
1

1+
1− P(B | A)

P(B | A)
· 1− P(A)
P(A)

(5)

=
1

1+

(
1

P(B | A)
− 1

)(
1

P(A)
− 1

) (6)
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Figure bay.1: for different high-sensitivities, the probability that an event
A occurred given that a test for itB is positive versus the probability that the event
A occurs, under the assumption the specificity equals the sensitivity.

This expression is plotted in Fig. bay.1. See that

a positive result for a rare event (small P(A)) is

hard to trust unless the sensitivity P(B | A) and

specificity P(¬B | ¬A) are very high, indeed!

Example prob.bay-1 re: Bayes’ theorem

Suppose 0.1% of springs manufactured at a

given plant are defective. Suppose you need to

design a test that, when it indicates a deffective

part, the part is actually defective 99% of the

time. What sensitivity should your test have

assuming it can bemade equal to its specificity?

The following was generated from a Jupyter

notebook with the following filename and

kernel.

notebook filename: bayes_theorem_example_01.ipynb
notebook kernel: python3

from sympy import * # for symbolics
import numpy as np # for numerics
import matplotlib.pyplot as plt # for plots!
from IPython.display import display, Markdown, Latex
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Define symbolic variables.

var('p_A,p_nA,p_B,p_nB,p_B_A,p_B_nA,p_A_B',real=True)

(p_A, p_nA, p_B, p_nB, p_B_A, p_B_nA, p_A_B)

Beginning with Bayes’ theorem and assuming

the sensitivity and specificity are equal by Eq. 4,

we can derive the following expression for the

posterior probability P(A | B).

p_A_B_e1 = Eq(p_A_B,p_B_A*p_A/p_B).subs(
{

p_B: p_B_A*p_A+p_B_nA*p_nA, # conditional prob
p_B_nA: 1-p_B_A, # Eq (3.5)
p_nA: 1-p_A

}
)
display(p_A_B_e1)

pAB =
pApBA

pApBA + (1− pA) (1− pBA)
Solve this for P(B | A), the quantity we seek.

p_B_A_sol = solve(p_A_B_e1,p_B_A,dict=True)
p_B_A_eq1 = Eq(p_B_A,p_B_A_sol[0][p_B_A])
display(p_B_A_eq1)

pBA =
pAB (1− pA)

−2pApAB + pA + pAB

Now let’s substitute the given probabilities.

p_B_A_spec = p_B_A_eq1.subs(
{

p_A: 0.001,
p_A_B: 0.99,

}
)
display(p_B_A_spec)

pBA = 0.999989888981011

That’s a tall order!


