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confidence

central limit theorem

stats.confidence Confidence

One really ought to have it to give a lecture

named it, but we’ll give it a try anyway.

Confidence is used in the common sense,

although we do endow it with a mathematical

definition to scare business majors, who aren’t

actually impressed, but indifferent.

Approximately: if, under some reasonable

assumptions (probabilistic model), we estimate

the probability of some event to be P%, we say

we have P% confidence in it. I mean, business

majors are all, “Supply and demand? Let’s call

that a ‘law,’ ” so I think we’re even.

So we’re back to computing probability from

distributions—probability density functions

(PDFs) and probability mass functions (PMFs).

Usually we care most about estimating the

mean of our distribution. Recall from the

previous lecture that when several samples are

taken, each with its own mean, the mean is itself

a random variable—with a mean, of course.

Meanception.

But the mean has a probability distribution of its

own. The central limit theorem has as one of its

implications that, as the sample size N gets

large, regardless of the sample distributions,

this distribution of means approaches the

Gaussian distribution.

But sometimes I always worry I’m being lied to,

so let’s check.

clear; close all; % clear kernel

Generate some data to test the central limit theorem

Data can be generated by constructing an array

using a (seeded for consistency) random

number generator. Let’s use a uniformly

distributed PDF between 0 and 1.

N = 150; % sample size (number of measurements per sample)
M = 120; % number of samples

http://ricopic.one/resources/inception.gif
http://ricopic.one/resources/mind_blown.gif
http://ricopic.one/resources/mind_blown.gif
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Figure confidence.1: raw data with colors corresponding to
samples.

n = N*M; % total number of measurements
mu_pop = 0.5; % because it's a uniform PDF between 0 and 1

rng(11); % seed the random number generator
signal_a = rand(N,M); % uniform PDF
size(signal_a) % check the size

ans =

150 120

Let’s take a look at the data by plotting the first

ten samples (columns), as shown in

Fig. confidence.1.

This is something like what we might see for

continuous measurement data. Now, the

histogram, shown in ??.

samples_to_plot = 10;
h = figure;
c = jet(samples_to_plot); % color array
for j=1:samples_to_plot

histogram(signal_a(:,j),...
30, ... % number of bins
'facecolor',c(j,:),...
'facealpha',.3,...
'normalization','probability'... % for PMF

);
hold on;

end
hold off;
xlim([-.05,1.05])
xlabel('measurement')
ylabel('probability')
hgsave(h,'figures/temp');



stats Statistics confidence Confidence p. 1

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

measurement

p
ro
b
ab
il
it
y

Figure confidence.2: a histogram showing the approximately
uniform distribution of each sample (color).

This isn’t a great plot, but it shows roughly that

each sample is fairly uniformly distributed.

Sample statistics

Now let’s check out the sample statistics. We

want the sample mean and standard deviation

of each column. Let’s use the built-in functions

mean and std.

mu_a = mean(signal_a,1); % mean of each column
s_a = std(signal_a,1); % std of each column

Now we can compute the mean statistics, both

the mean of the mean X and the standard

deviation of the mean sX, which we don’t

strictly need for this part, but we’re curious. We

choose to use the direct estimate instead of the

sX/
√
N formula, but they should be close.

mu_mu = mean(mu_a)
s_mu = std(mu_a)

mu_mu =

0.4987

s_mu =

0.0236
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Figure confidence.3: a histogram showing the approximately
normal distribution of the means.

The truth about sample means

It’s the moment of truth. Let’s look at the

distribution, shown in Fig. confidence.3.

h = figure;
histogram(mu_a,...

'normalization','probability'... % for PMF
);
hold off;
xlabel('measurement')
ylabel('probability')
hgsave(h,'figures/temp');

This looks like a Gaussian distribution about the

mean of means, so I guess the central limit

theorem is legit.

Gaussian and probability

We already know how to compute the

probability P a value of a random variable X lies

in a certain interval from a PMF or PDF (the sum

or the integral, respectively). This means that,

for sufficiently large sample size N such that we

can assume from the central limit theorem that

the sample means xi are normally distributed,

the probability a sample mean value xi is in a

certain interval is given by integrating the

Gaussian PDF. The Gaussian PDF for random

variable Y representing the sample means is

f(y) =
1

σ
√
2π

exp −(y− µ)2

2σ2
. (1)
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Figure confidence.4: the error function.

Gaussian cumulative distribution function

where µ is the population mean and σ is the

population standard deviation.

The integral of f over some interval is the

probability a value will be in that interval.

Unfortunately, that integral is uncool. It gives

rise to the definition of the error function,

which, for the Gaussian random variable Y, is

erf(yb) =
1√
π

ˆ yb

−yb

e−t2dt. (2)

This expresses the probability a sample mean

being in the interval [−yb, yb] if Y has mean 0

and variance 1/2.

Matlab has this built-in as erf, shown in
Fig. confidence.4.

y_a = linspace(0,3,100);
h = figure;
p1 = plot(y_a,erf(y_a));
p1.LineWidth = 2;
grid on
xlabel('interval bound $y_b$','interpreter','latex')
ylabel('error function $\textrm{erf}(y_b)$',...

'interpreter','latex')
hgsave(h,'figures/temp');

We could deal directly with the error function,

but most people don’t and we’re weird enough,

as it is. Instead, people use the Gaussian

cumulative distribution function (CDF)
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Φ : R→ R, which is defined as

Φ(z) =
1

2

(
1+ erf

(
z√
2

))
(3)

and which expresses the probability of a

Gaussian random variable Z with mean 0 and

standard deviation 1 taking on a value in the

interval (−∞, z]. The Gaussian CDF and PDF are
shown in Fig. confidence.5. Values can be taken

directly from the graph, but it’s more accurate

to use the table of values in Appendix A.01.

That’s great and all, but occasionally (always)

we have Gaussian random variables with

nonzero means and nonunity standard

deviations. It turns out we can shift any

Gaussian random variable by its mean and scale

it by its standard deviation to make it have zero

mean and standard deviation. We can then use

Φ and interpret the results as being relative to

the mean and standard deviation, using phrases

like “the probability it is within two standard

deviations of its mean.” The transformed

random variable Z and its values z are

sometimes called the z-score. For a particular

value x of a random variable X, we can compute

its z-score (or value z of random variable Z) with

the formula

z =
x− µX
σX

(4)

and compute the probability of X taking on a

value within the interval, say, x ∈ [xb−, xb+]

from the table. (Sample statistics X and SX are

appropriate when population statistics are

unknown.)

For instance, compute the probability a

Gaussian random variable Xwith µX = 5 and

σX = 2.34 takes on a value within the interval

x ∈ [3, 6].

1. Compute the z-score of each endpoint of

the interval:
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Figure confidence.5: the Gaussian PDF and CDF for z-scores.

z3 =
3− µX
σX

≈ −0.85 (5)

z6 =
6− µX
σX

≈ 0.43. (6)

2. Look up the CDF values for z3 and z6, which

are Φ(z3) = 0.1977 and Φ(z6) = 0.6664. 3. The

CDF values correspond to the probabilities x < 3

and x < 6. Therefore, to find the probability x

lies in that interval, we subtract the lower

bound probability:

P(x ∈ [3, 6]) = P(x < 6) − P(x < 3) (7)

= Φ(6) −Φ(3) (8)

≈ 0.6664− 0.1977 (9)

≈ 0.4689. (10)

So there is a 46.89% probability, and therefore

we have 46.89% confidence, that x ∈ [3, 6].
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Often we want to go the other way, estimating

the symmetric interval [xb−, xb+] for which

there is a given probability. In this case, we first

look up the z-score corresponding to a certain

probability. For concreteness, given the same

population statistics above, let’s find the

symmetric interval [xb−, xb+] over which we

have 90% confidence. From the table, we want

two, symmetric z-scores that have CDF-value

difference 0.9. Or, in maths,

Φ(zb+) −Φ(zb−) = 0.9 and zb+ = −zb−.

(11)

Due to the latter relation and the additional fact

that the Gaussian CDF has antisymmetry,

Φ(zb+) +Φ(zb−) = 1. (12)

Adding the two Φ equations,

Φ(zb+) = 1.9/2 (13)

= 0.95 (14)

and Φ(zb−) = 0.05. From the table, these

correspond (with a linear interpolation) to

zb = zb+ = −zb− ≈ 1.645. All that remains is to
solve the z-score formula for x:

x = µX + zσX. (15)

From this,

xb+ = µX + zb+σX ≈ 8.849 (16)

xb− = µX + zb−σX ≈ 1.151. (17)

and X has a 90% confidence interval

[1.151, 8.849].
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Example stats.confidence-1 re: gaussian confidence for a mean

Consider the data set generated above. What is

our 95% confidence interval in our estimate of

the mean?

Assuming we have a sufficiently large data

set, the distribution of means is approximately

Gaussian. Following the same logic as above,

we need z-score that gives an upper CDF value

of . From the table, we

obtain the zb = zb+ = −zb−, below.

z_b = 1.96;

Now we can estimate the mean using our

sample and mean statistics,

X = X± zbSX. (18)

mu_x_95 = mu_mu + [-z_b,z_b]*s_mu

mu_x_95 =

0.4526 0.5449

This is our 95% confidence interval in our

estimate of the mean.


