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joint PDF

joint PMF

stats.multivar Multivariate probability and correlation

Thus far, we have considered probability

density and mass functions (PDFs and PMFs) of

only one random variable. But, of course, often

we measure multiple random variables

X1, X2, . . . , Xn during a single event, meaning a

measurement consists of determining values

x1, x2, . . . , xn of these random variables.

We can consider an n-tuple of continuous

random variables to form a sample space

Ω = Rn on which a multivariate function

f : Rn → R, called the joint PDF assigns a
probability density to each outcome x ∈ Rn. The

joint PDF must be greater than or equal to zero

for all x ∈ Rn, the multiple integral over Ωmust

be unity, and the multiple integral over a subset

of the sample space A ⊂ Ω is the probability of

the event A.

We can consider an n-tuple of discrete random

variables to form a sample space Nn
0 on which a

multivariate function f : Nn
0 → R, called the joint

PMF assigns a probability to each outcome

x ∈ Nn
0 . The joint PMF must be greater than or

equal to zero for all x ∈ Nn
0 , the multiple sum

over Ωmust be unity, and the multiple sum

over a subset of the sample space A ⊂ Ω is the

probability of the event A.

Example stats.multivar-1 re: bivariate gaussian pdf

Let’s visualize multivariate PDFs by plotting

a bivariate gaussian using Matlab’s mvnpdf
function.

mu = [10,20]; % means
Sigma = [1,0;0,.2]; % cov ... we'll talk about this
x1_a = linspace(...

mu(1)-5*sqrt(Sigma(1,1)),...
mu(1)+5*sqrt(Sigma(1,1)),...
30);

x2_a = linspace(...
mu(2)-5*sqrt(Sigma(2,2)),...
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marginal PDF

mu(2)+5*sqrt(Sigma(2,2)),...
30);

[X1,X2] = meshgrid(x1_a,x2_a);
f = mvnpdf([X1(:) X2(:)],mu,Sigma);
f = reshape(f,length(x2_a),length(x1_a));

h = figure;
p = surf(x1_a,x2_a,f);
xlabel('$x_1$','interpreter','latex')
ylabel('$x_2$','interpreter','latex')
zlabel('$f(x_1,x_2)$','interpreter','latex')
shading interp
hgsave(h,'figures/temp');

The result is Fig. multivar.1. Note

how the means and standard

deviations affect the distribution.
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Figure multivar.1: two-variable gaussian PDF.

Marginal probability

The marginal PDF of a multivariate PDF is the

PDF of some subspace of Ω after one or more

variables have been “integrated out,” such that

a fewer number of random variables remain. Of

course, these marginal PDFs must have the

same properties of any PDF, such as integrating

to unity.

Example stats.multivar-2 re: bivariate gaussian marginal probability

Let’s demonstrate this by numerically

integrating over x2 in the bivariate Gaussian,

above.
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machine learning

artificial intelligence

covariance

Continuing from where we left off, let’s

integrate.

f1 = trapz(x2_a,f',2); % trapezoidal integration

Plotting this yields Fig. multivar.2.

h = figure;
p = plot(x1_a,f1);
p.LineWidth = 2;
xlabel('$x_1$','interpreter','latex')
ylabel(...
'$g(x_1)=\int_{-\infty}^\infty f(x_1,x_2) d x_2$',...
'interpreter','latex'...
)
hgsave(h,'figures/temp');
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Figure multivar.2: marginal Gaussian PDF g(x1).

We should probably verify that this integrates

to one.

disp(['integral over x_1 = ',...
sprintf('%0.7f',trapz(x1_a,f1))] ...

)

integral over x_1 = 0.9999986

Not bad.

Covariance

Very often, especially in machine learning or

artificial intelligence applications, the question

about two random variables X and Y is: how do

they co-vary? That is what is their covariance,
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correlation

sample covariance

covariance matrix

defined as

Cov [X, Y] ≡ E ((X− µX)(Y − µY))

= E(XY) − µXµY .

Note that when X = Y, the covariance is just the

variance. When a covariance is large and

positive, it is an indication that the random

variables are strongly correlated. When it is

large and negative, they are strongly

anti-correlated. Zero covariance means the

variables are uncorrelated. In fact, correlation is

defined as

Cor [X, Y] = Cov [X, Y]√
Var [X]Var [Y]

.

This is essentially the covariance “normalized”

to the interval [−1, 1].

Sample covariance

As with the other statistics we’ve considered,

covariance can be estimated from measurement.

The estimate, called the sample covariance qXY ,

of random variables X and Y with sample size N

is given by

qXY =
1

N− 1

N∑
i=1

(xi − X)(yi − Y).

Multivariate covariance

With n random variables Xi, one can compute

the covariance of each pair. It is common

practice to define an n× nmatrix of covariances
called the covariance matrix Σ such that each

pair’s covariance

Cov
[
Xi, Xj

]
(1)

appears in its row-column combination (making

it symmetric), as shown below.

Σ =


Cov [X1, X1] Cov [X1, X2] · · · Cov [X1, Xn]

Cov [X2, X1] Cov [X2, X2] Cov [X2, Xn]
...

. . .
...

Cov [Xn, X1] Cov [Xn, X2] · · · Cov [Xn, Xn]


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sample covariance matrixThe multivariate sample covariance matrix Q is

the same as above, but with sample covariances

qXiXj
.

Both covariance matrices have correlation

analogs.

Example stats.multivar-3 re: car data sample covariance and

correlation

Let’s use a built-in multivariate data set that

describes different features of cars, listed below.

d = load('carsmall.mat') % this is a "struct"

Let’s compute the sample covariance and

correlation matrices.

variables = {...
'MPG','Cylinders',...
'Displacement','Horsepower',...
'Weight','Acceleration',...
'Model_Year'};

n = length(variables);
m = length(d.MPG);

data = NaN*ones(m,n); % preallocate
for i = 1:n

data(:,i) = d.(variables{i});
end

cov_d = nancov(data); % sample covariance
cor_d = corrcov(cov_d) % sample correlation

This is highly correlated/anticorrelated

data! Let’s plot each variable versus each

other variable to see the correlations of each.

We use a red-to-blue colormap to contrast

anticorrelation and correlation. Purple, then, is

uncorrelated.

The following builds the red-to-blue colormap.

n_colors = 10;
cmap_rb = NaN*ones(n_colors,3);
for i = 1:n_colors
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a = i/n_colors;
cmap_rb(i,:) = (1-a)*[1,0,0]+a*[0,0,1];

end

h = figure;
for i = 1:n

for j = 1:n
subplot(n,n,sub2ind([n,n],j,i))
p = plot(...
d.(variables{i}),...
d.(variables{j}),'.'...

); hold on
this_color = cmap_rb(...
round((cor_d(i,j)+1)*(n_colors-1)/2),...
:...

);
p.MarkerFaceColor = this_color;
p.MarkerEdgeColor = this_color;

end
end
hgsave(h,'figures/temp');

Figure multivar.3: car data correlation.

Conditional probability and dependence

Independent variables are uncorrelated.

However, uncorrelated variables may or may

not be independent. Therefore, we cannot use

correlation alone as a test for independence. For
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instance, for random variables X and Y, where X

has some even distribution and Y = X2, clearly

the variables are dependent. However, the are

also uncorrelated (due to symmetry).

Example stats.multivar-4 re: car data sample covariance and

correlation

Using a uniform distribution U(−1, 1), show

that X and Y are uncorrelated (but dependent)

with Y = X2 with some sampling. We compute

the correlation for different sample sizes.

N_a = round(linspace(10,500,100));
qc_a = NaN*ones(size(N_a));
rng(6)
x_a = -1 + 2.*rand(max(N_a),1);
y_a = x_a.^2;
for i = 1:length(N_a)

% should write incremental algorithm
% but lazy
q = cov(x_a(1:N_a(i)),y_a(1:N_a(i)));
qc = corrcov(q);
qc_a(i) = qc(2,1); % "cross" correlation

end

The absolute values of the correlations are

shown in Fig. multivar.4. Note that we should

probably average several such curves to

estimate how the correlation would drop off

with N, but the single curve describes our

understanding that the correlation, in fact,

approaches zero in the large-sample limit.

h = figure;
p = plot(N_a,abs(qc_a));
p.LineWidth = 2;
xlabel('sample size $N$','interpreter','latex')
ylabel(...
'absolute sample correlation',...
'interpreter','latex'...

)
hgsave(h,'figures/temp');
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Figure multivar.4: absolute value of the sample correlation
between X ∼ U(−1, 1) and Y = X2 for different sample size N. In
the limit, the population correlation should approach zero and yet X and Y are
not independent.


