
stats Statistics regression Regression p. 1

0 20 40 60 80 100
50

60

70

X (mm)

F
(N
)

Figure regression.1: force-displacement data.

stats.regression Regression

Suppose we have a sample with two

measurands: (1) the force F through a spring and

(2) its displacement X (not from equilibrium).

We would like to determine an analytic function

that relates the variables, perhaps for prediction

of the force given another displacement.

There is some variation in the measurement.

Let’s say the following is the sample.

X_a = 1e-3*[10,21,30,41,49,50,61,71,80,92,100]'; % m
F_a = [50.1,50.4,53.2,55.9,57.2,59.9,...

61.0,63.9,67.0,67.9,70.3]'; % N

Let’s take a look at the data. The result is

Figure regression.1.

h = figure;
p = plot(X_a*1e3,F_a,'.b','MarkerSize',15);
xlabel('X (mm)','interpreter','latex')
ylabel('F (N)','interpreter','latex')
xlim([0,max(X_a*1e3)])
grid on
hgsave(h,'figures/temp');

How might we find an analytic function that

agrees with the data? Broadly, our strategy will

be to assume a general form of a function and

use the data to set the parameters in the

stats Statistics regression Regression p. 2

function such that the difference between the

data and the function is minimal.

Let y be the analytic function that we would like

to fit to the data. Let yi denote the value of

y(xi), where xi is the ith value of the random

variable X from the sample. Then we want to

minimize the differences between the force

measurements Fi and yi.

From calculus, recall that we can minimize a

function by differentiating it and solving for the

zero-crossings (which correspond to local

maxima or minima).

First, we need such a function to minimize.

Perhaps the simplest, effective function D is

constructed by squaring and summing the

differences we want to minimize, for sample

size N:

D(xi) =

N∑
i=1

(Fi − yi)
2 (1)

(recall that yi = y(xi), which makes D a function

of x).

Now the form of ymust be chosen. We consider

onlymth-order polynomial functions y, but

others can be used in a similar manner:

y(x) = a0 + a1x+ a2x
2 + · · ·+ amxm. (2)

If we treat D as a function of the polynomial

coefficients aj, i.e.

D(a0, a1, · · · , am), (3)

and minimize D for each value of xi, we must

take the partial derivatives of Dwith respect to

each aj and set each equal to zero:

∂D

∂a0
= 0,

∂D

∂a1
= 0, · · · , ∂D

∂am
= 0.

This gives us N equations andm+ 1 unknowns

stats Statistics regression Regression p. 3

aj. Writing the system in matrix form,

1 x1 x21 · · · xm1

1 x2 x22 · · · xm2

1 x3 x23 · · · xm3
...

...
...

. . .
...

1 xN x2N · · · xmN


︸ ︷︷ ︸

AN×(m+1)



a0

a1

a2
...

am


︸ ︷︷ ︸
a(m+1)×1

=



F1

F2

F3
...

FN


︸ ︷︷ ︸
bN×1

. (4)

Typically N > m and this is an overdetermined

system. Therefore, we usually can’t solve by

taking A−1 because A doesn’t have an inverse!

Instead, we either find the Moore-Penrose

pseudo-inverse A† and have a = A†b as the

solution, which is inefficient—or we can

approximate bwith an algorithm such as that

used by Matlab’s \ operator. In the latter case,
a_a = A\b_a.

Example stats.regression-1 re: regression

Use Matlab’s \ operator to find a good

polynomial fit for the sample. There’s the

sometimes-difficult question “what order

should we fit?” Let’s try out several and see

what the squared-differences function D gives.

N = length(X_a); % sample size
m_a = 2:N; % all the order up to N

A = NaN*ones(length(m_a),max(m_a),N);
for k = 1:length(m_a) % each order

for j = 1:N % each measurement
for i = 1:(m_a(k) + 1) % each coef

A(k,j,i) = X_a(j)^(i-1);
end

end
end
disp(squeeze(A(2,:,1:5)))

1.0000 0.0100 0.0001 0.0000 NaN
1.0000 0.0210 0.0004 0.0000 NaN
1.0000 0.0300 0.0009 0.0000 NaN
1.0000 0.0410 0.0017 0.0001 NaN
1.0000 0.0490 0.0024 0.0001 NaN
1.0000 0.0500 0.0025 0.0001 NaN

stats Statistics regression Regression p. 4

1.0000 0.0610 0.0037 0.0002 NaN
1.0000 0.0710 0.0050 0.0004 NaN
1.0000 0.0800 0.0064 0.0005 NaN
1.0000 0.0920 0.0085 0.0008 NaN
1.0000 0.1000 0.0100 0.0010 NaN

We’ve printed the first five columns of the third-

order matrix, which only has four columns, so

NaNs fill in the rest.
Now we can use the \ operator to solve for the
coefficients.

a = NaN*ones(length(m_a),max(m_a));

warning('off','all')
for i = 1:length(m_a)

A_now = squeeze(A(i,:,1:m_a(i)));
a(i,1:m_a(i)) = (A_now(:,1:m_a(i))\F_a)';

end
warning('on','all')

n_plot = 100;
x_plot = linspace(min(X_a),max(X_a),n_plot);
y = NaN*ones(n_plot,length(m_a)); % preallocate
for i = 1:length(m_a)

y(:,i) = polyval(fliplr(a(i,1:m_a(i))),x_plot);
end

h = figure;
for i = 1:2:length(m_a)-1

p = plot(x_plot*1e3,y(:,i),'linewidth',1.5);
hold on
p.DisplayName = sprintf(...

'order: %i ',...
(m_a(i)-1)...

);
end
p = plot(X_a*1e3,F_a,'.b','MarkerSize',15);
xlabel('X (mm)','interpreter','latex')
ylabel('F (N)','interpreter','latex')
p.DisplayName = 'sample';
legend('show','location','southeast')
grid on
hgsave(h,'figures/temp');

stats Statistics exe Regression p. 5

20 40 60 80 100

50

60

70

X (mm)

F
(N
)

order: 1

order: 3

order: 5

order: 7

order: 9

sample

Figure regression.2: force-displacement data with curve fits.

