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Flux and surface integrals

Consider a surface S. Let

r(u, v) = [x(u, v), y(u, v), z(u, v)] be a parametric

position vector on a Euclidean vector space R3.

Furthermore, let F : R3 → R3 be a vector-valued

function of r and let n be a unit-normal vector

on a surface S. The surface integral¨

S

F · ndS (1)

which integrates the normal of F over the

surface. We call this quantity the flux of F out of

the surface S. This terminology comes from

fluid flow, for which the flux is the mass flow

rate out of S. In general, the flux is a measure of

a quantity (or field) passing through a surface.

For more on computing surface integrals, see

Schey6 and Kreyszig.7

Continuity

Consider the flux out of a surface S that encloses

a volume ∆V , divided by that volume:

1

∆V

¨

S

F · ndS. (2)

This gives a measure of flux per unit volume for

a volume of space. Consider its physical

meaning when we interpret this as fluid flow:

all fluid that enters the volume is negative flux

and all that leaves is positive. If physical

conditions are such that we expect no fluid to

enter or exit the volume via what is called a

source or a sink, and if we assume the density of

the fluid is uniform (this is called an

incompressible fluid), then all the fluid that

enters the volume must exit and we get

1

∆V

¨

S

F · ndS = 0. (3)



vecs Vector calculus div Divergence, surface integrals, and flux p. 1

continuity equation

divergence

This is called a continuity equation, although

typically this name is given to equations of the

form in the next section. This equation is one of

the governing equations in continuum

mechanics.

Divergence

Let’s take the flux-per-volume as the volume

∆V → 0 we obtain the following.

Equation 4 divergence: integral

form

lim
∆V→0

1

∆V

¨

S

F · ndS.

This is called the divergence of F and is defined

at each point in R3 by taking the volume to zero

about it. It is given the shorthand div F.

What interpretation can we give this quantity?

It is a measure of the vector field’s flux outward

through a surface containing an infinitesimal

volume. When we consider a fluid, a positive

divergence is a local decrease in density and a

negative divergence is a density increase. If the

fluid is incompressible and has no sources or

sinks, we can write the continuity equation

div F = 0. (5)

In the Cartesian basis, it can be shown that the

divergence is easily computed from the field

F = Fxî+ Fyĵ+ Fzk̂ (6)

as follows.

Equation 7 divergence: differential

form

div F = ∂xFx + ∂yFy + ∂zFz
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Exploring divergence

Divergence is perhaps best explored by

considering it for a vector field in R2. Such a

field F = Fxî+ Fyĵ can be represented as a

“quiver” plot. If we overlay the quiver plot over

a “color density” plot representing div F, we can

increase our intuition about the divergence.

The following was generated from a Jupyter

notebook with the following filename and

kernel.

notebook filename: div_surface_integrals_flux.ipynb
notebook kernel: python3

First, load some Python packages.

from sympy import *
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import LogLocator
from matplotlib.colors import *
from sympy.utilities.lambdify import lambdify
from IPython.display import display, Markdown, Latex

Now we define some symbolic variables and

functions.

var('x,y')
F_x = Function('F_x')(x,y)
F_y = Function('F_y')(x,y)

Rather than repeat code, let’s write a single

function quiver_plotter_2D to make several of
these plots.

def quiver_plotter_2D(
field={F_x:x*y,F_y:x*y},
grid_width=3,
grid_decimate_x=8,
grid_decimate_y=8,
norm=Normalize(),
density_operation='div',
print_density=True,

):
# define symbolics
var('x,y')
F_x = Function('F_x')(x,y)
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F_y = Function('F_y')(x,y)
field_sub = field

# compute density
if density_operation is 'div':
den = F_x.diff(x) + F_y.diff(y)

elif density_operation is 'curl':
# in the k direction
den = F_y.diff(x) - F_x.diff(y)

else:
error('div and curl are the only density operators')

den_simp = den.subs(
field_sub

).doit().simplify()
if den_simp.is_constant():
print(

'Warning: density operator is constant (no density plot)'
)

if print_density:
print(f'The {density_operation} is:')
display(den_simp)

# lambdify for numerics
F_x_sub = F_x.subs(field_sub)
F_y_sub = F_y.subs(field_sub)
F_x_fun = lambdify((x,y),F_x.subs(field_sub),'numpy')
F_y_fun = lambdify((x,y),F_y.subs(field_sub),'numpy')
if F_x_sub.is_constant:
F_x_fun1 = F_x_fun # dummy
F_x_fun = lambda x,y: F_x_fun1(x,y)*np.ones(x.shape)

if F_y_sub.is_constant:
F_y_fun1 = F_y_fun # dummy
F_y_fun = lambda x,y: F_y_fun1(x,y)*np.ones(x.shape)

if not den_simp.is_constant():
den_fun = lambdify((x,y), den_simp,'numpy')

# create grid
w = grid_width
Y, X = np.mgrid[-w:w:100j, -w:w:100j]

# evaluate numerically
F_x_num = F_x_fun(X,Y)
F_y_num = F_y_fun(X,Y)
if not den_simp.is_constant():
den_num = den_fun(X,Y)

# plot
p = plt.figure()
# colormesh
if not den_simp.is_constant():
cmap = plt.get_cmap('PiYG')
im = plt.pcolormesh(X,Y,den_num,cmap=cmap,norm=norm)
plt.colorbar()

# Abs quiver
dx = grid_decimate_y
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Figure div.1: png

dy = grid_decimate_x
plt.quiver(
X[::dx,::dy],Y[::dx,::dy],
F_x_num[::dx,::dy],F_y_num[::dx,::dy],
units='xy', scale=10

);
plt.title(f'F(x,y) = [{F_x.subs(field_sub)},{F_y.subs(field_sub)}]')
return p

Note that while we’re at it, we included a hook

for density plots of the curl of F, and we’ll return

to this in a later lecture.

Let’s inspect several cases.

p = quiver_plotter_2D(
field={F_x:x**2,F_y:y**2}

)

The div is:

2x+ 2y

p = quiver_plotter_2D(
field={F_x:x*y,F_y:x*y}

)
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Figure div.2: png

The div is:

x+ y

p = quiver_plotter_2D(
field={F_x:x**2+y**2,F_y:x**2+y**2}

)

The div is:

2x+ 2y

p = quiver_plotter_2D(
field={F_x:x**2/sqrt(x**2+y**2),F_y:y**2/sqrt(x**2+y**2)},
norm=SymLogNorm(linthresh=.3, linscale=.3)

)

The div is:

−x3 − y3 + 2 (x+ y)
(
x2 + y2

)
(x2 + y2)

3
2
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Figure div.3: png

Figure div.4: png


