
four Fourier and orthogonality exe Exercises for Chapter four p. 1

/25 p.

/20 p.

/25 p.

−T/2 −T/4 0 T/4 T/2

−A

−A/2

0

A/2

A

t

y
(t
)

Figure exe.1: one period T of the function y(t). Every line that appears
straight is so.

four.exe Exercises for Chapter four

Exercise four.stanislaw

Explain, in your own words (supplementary

drawings are ok), what the frequency domain is,

how we derive models in it, and why it is useful.

Exercise four.pug

Consider the function

f(t) = 8 cos(t) + 6 sin(2t) +
√
5 cos(4t) + 2 sin(4t) + cos(6t− π/2).

(a) Find the (harmonic) magnitude and

(harmonic) phase of its Fourier series

components. (b) Sketch its magnitude and

phase spectra. Hint: no Fourier integrals are

necessary to solve this problem.

Exercise four.ponyo

Consider the function with a > 0

f(t) = e−a|t|.

From the transform definition, derive the

Fourier transform F(ω) of f(t). Simplify the

result such that it is clear the expression is real

(no imaginary component).

Exercise four.seesaw

Consider the periodic function f : R→ Rwith

period T defined for one period as

f(t) = at for t ∈ (−T/2, T/2] (1)

where a, T ∈ R. Perform a fourier series analysis

on f. Letting a = 5 and T = 1, plot f along with

the partial sum of the fourier series synthesis,

the first 50 nonzero components, over t ∈ [−T, T].

four Fourier and orthogonality exe Exercises for Chapter four p. 1

/20 p.

4. It may be alarming to see a Fourier transform of a periodic function!
Strictly speaking, it does not exist; however, if we extend the transform
to include the distribution (not actually a function) Dirac δ(ω), the
modified-transform does exist and is given in Table four.1.

4. Python code in this section was generated from a Jupyter notebook
named random_signal_fft.ipynbwith a python3 kernel.

Exercise four.totoro

Consider a periodic function y(t) with some

period T ∈ R and some parameter A ∈ R for

which one period is shown in Fig. exe.1.

1. Perform a trigonometric Fourier series

analysis of y(t) and write the Fourier

series Y(ω).

2. Plot the harmonic amplitude spectrum of

Y(ω) for A = T = 1. Consider using

computing software.

3. Plot the phase spectrum of Y(ω) for

A = T = 1. Consider using computing

software.

Exercise four.mall

Consider the function f : R→ R defined as

f(t) =

a− a|t|/T for t ∈ [−T, T]

0 otherwise
(2)

where a, T ∈ R. Perform a fourier series analysis

on f, resulting in F(ω). Plot F for various a and T .

Exercise four.miyazaki

Consider the function f : R→ R defined as

f(t) = ae−b|t−T | (3)

where a, b, T ∈ R. Perform a fourier transform

analysis on f, resulting in F(ω). Plot F for

various a, b, and T .

Exercise four.haku

Consider the function f : R→ R defined as

f(t) = a cosω0t+ b sinω0t (4)

where a, b,ω0 ∈ R constants. Perform a fourier

transform analysis on f, resulting in F(ω).4

four Fourier and orthogonality exe Exercises for Chapter four p. 2

Exercise four.secrets

This exercise encodes a “secret word” into a

sampled waveform for decoding via a discrete

fourier transform (DFT). The nominal goal of

the exercise is to decode the secret word. Along

the way, plotting and interpreting the DFT will

be important.

First, load relevant packages.

import numpy as np
import matplotlib.pyplot as plt
from IPython.display import display, Markdown, Latex

We define two functions: letter_to_number to
convert a letter into an integer index of the
alphabet (a becomes 1, b becomes 2, etc.) and

string_to_number_list to convert a string to a
list of ints, as shown in the example at the
end.

def letter_to_number(letter):
return ord(letter) - 96

def string_to_number_list(string):
out = [] # list
for i in range(0,len(string)):

out.append(letter_to_number(string[i]))
return out # list

print(f"aces = { string_to_number_list('aces') }")

aces = [1, 3, 5, 19]

Now, we encode a code string code into a signal
by beginning with “white noise,” which is

broadband (appears throughout the spectrum)

and adding to it sin functions with amplitudes
corresponding to the letter assignments of the

code and harmonic corresponding to the

position of the letter in the string. For instance,

the string 'bad' would be represented by noise
plus the signal

2 sin 2πt+ 1 sin 4πt+ 4 sin 6πt. (5)

Let’s set this up for secret word 'chupcabra'.

four Fourier and orthogonality exe Exercises for Chapter four p. 3

0 1 2 3 4 5 6 7

time (s)

−60

−40

−20

0

20

40

60

y n

Figure exe.2: the chupacabra signal.

N = 2000
Tm = 30
T = float(Tm)/float(N)
fs = 1/T
x = np.linspace(0, Tm, N)
noise = 4*np.random.normal(0, 1, N)
code = 'chupcabra' # the secret word
code_number_array = np.array(string_to_number_list(code))
y = np.array(noise)
for i in range(0,len(code)):

y = y + code_number_array[i]*np.sin(2.*np.pi*(i+1.)*x)

For proper decoding, later, it is important to

know the fundamental frequency of the

generated data.

print(f"fundamental frequency = {fs} Hz")

fundamental frequency = 66.66666666666667 Hz

Now, we plot.

fig, ax = plt.subplots()
plt.plot(x,y)
plt.xlim([0,Tm/4])
plt.xlabel('time (s)')
plt.ylabel('y_n')
plt.show()

Finally, we can save our data to a numpy file
secrets.npy to distribute our message.

four Fourier and orthogonality exe Exercises for Chapter four p. 1

np.save('secrets',y)

Now, I have done this (for a different secret

word!) and saved the data; download it here:

ricopic.one/mathematical_foundations/source/secrets.npy

In order to load the .npy file into Python, we
can use the following command.

secret_array = np.load('secrets.npy')

Your job is to (a) perform a DFT, (b) plot the

spectrum, and (c) decode the message! Here are

a few hints.

1. Use from scipy import fft to do the
DFT.

2. Use a hanning window to minimize the

end-effects. See numpy.hanning for
instance. The fft call might then look like

2*fft(np.hanning(N)*secret_array)/N

where N = len(secret_array).
3. Use only the positive spectrum; you can

lop off the negative side and double the

positive side.

Exercise four.society

Derive a fourier transform property for

expressions including function f : R→ R for

f(t) cos(ω0t+ψ)

where ω0, ψ ∈ R.

Exercise four.flapper

Consider the function f : R→ R defined as

f(t) = aus(t)e
−bt cos(ω0t+ψ) (6)

http://ricopic.one/mathematical_foundations/source/secrets.npy

four Fourier and orthogonality exe Exercises for Chapter four p. 1

/20 p.

where a, b,ω0, ψ ∈ R and us(t) is the unit step

function. Perform a fourier transform analysis

on f, resulting in F(ω). Plot F for various a, b,

ω0, ψ and T .

Exercise four.eastegg

Consider the function f : R→ R defined as

f(t) = g(t) cos(ω0t) (7)

where ω0 ∈ R and g : R→ Rwill be defined in

each part below. Perform a fourier transform

analysis on f for each g below for ω1 ∈ R a

constant and consider how things change if

ω1 → ω0.

a. g(t) = cos(ω1t)

b. g(t) = sin(ω1t)

Exercise four.savage

An instrument called a “lock-in amplifier” can

measure a sinusoidal signal

A cos(ω0t+ψ) = a cos(ω0t) + b sin(ω0t) at a

known frequency ω0 with exceptional accuracy

even in the presence of significant noise N(t).

The workings of these devices can be described

in two operations: first, the following

operations on the signal with its noise,

f1(t) = a cos(ω0t) + b sin(ω0t) +N(t),

f2(t) = f1(t) cos(ω1t) and f3(t) = f1(t) sin(ω1t).

(8)

where ω0,ω1, a, b ∈ R. Note the relation of this
operation to the Fourier transform analysis of

Exercise four.. The key is to know with some

accuracty ω0 such that the instrument can set

ω1 ≈ ω0. The second operation on the signal is

an aggressive low-pass filter. The filtered f2 and

f3 are called the in-phase and quadrature

four Fourier and orthogonality exe Exercises for Chapter four p. 1

components of the signal and are typically given

a complex representation

(in-phase) + j (quadrature).

Explain with fourier transform analyses on f2

and f3

a. what F2 = F(f2) looks like,

b. what F3 = F(f3) looks like,

c. why we want ω1 ≈ ω0,

d. why a low-pass filter is desirable, and

e. what the time-domain signal will look like.

Exercise four.strawman

Consider again the lock-in amplifier explored in

Exercise four.. Investigate the lock-in amplifier

numerically with the following steps.

a. Generate a noisy sinusoidal signal at some

frequency ω0. Include enough broadband

white noise that the signal is invisible in a

time-domain plot.

b. Generate f2 and f3, as described in

Exercise four..

c. Apply a time-domain discrete low-pass

filter to each f2 7→ φ2 and f3 7→ φ3, such as

scipy’s scipy.signal.sosfiltfilt, to
complete the lock-in amplifier operation.

Plot the results in time and as a complex

(polar) plot.

d. Perform a discrete fourier transform on

each f2 7→ F2 and f3 7→ F3. Plot the spectra.

e. Construct a frequency domain low-pass

filter F and apply it (multiply!) to each

F2 7→ F ′2 and F3 7→ F ′3. Plot the filtered

spectra.

f. Perform an inverse discrete fourier

transform to each F ′2 7→ f ′2 and F
′
3 7→ f ′3.

Plot the results in time and as a complex

(polar) plot.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sosfiltfilt.html#scipy.signal.sosfiltfilt

pde Fourier and orthogonality Exercises for Chapter four p. 2

g. Compare the two methods used, i.e.

time-domain filtering versus

frequency-domain filtering.

ordinary differential equations

lumped-parameter modeling

time-varying spatial distribution

pde

Partial differential equations

An ordinary differential equation is one with

(ordinary) derivatives of functions a single

variable each—time, in many applications.

These typically describe quantities in some sort

of lumped-parameter way: mass as a “point

particle,” a spring’s force as a function of

time-varying displacement across it, a resistor’s

current as a function of time-varying voltage

across it. Given the simplicity of such models in

comparison to the wildness of nature, it is quite

surprising how well they work for a great many

phenomena. For instance, electronics, rigid

body mechanics, population dynamics, bulk

fluid mechanics, and bulk heat transfer can be

lumped-parameter modeled.

However, as we saw in ??, there are many

phenomena of which we require more detailed

models. These include:

• detailed fluid mechanics,

• detailed heat transfer,

• solid mechanics,

• electromagnetism, and

• quantum mechanics.

In many cases, what is required to account for is

the time-varying spatial distribution of a

quantity. In fluid mechanics, we treat a fluid as

having quantities such as density and velocity

that vary continuous over space and time.

Deriving the governing equations for such

phenomena typically involves vector calculus;

pde Partial differential equations class p. 4

partial differential equations

dependent variables

independent variables

analytic solution

numeric solution

1. There are some analytic techniques for gaining insight into PDEs for
which there are no known solutions, such as considering the phase space.
This is an active area of research; for more, see Bove, Colombini and
Santo. (Antonio Bove, F. (Ferruccio) Colombini and Daniele Del Santo.
Phase space analysis of partial differential equations. eng. Progress in
nonlinear differential equations and their applications ; v. 69. Boston ;
Berlin: Birkhäuser, 2006. ISBN: 9780817645212)

2. Kreyszig, Advanced Engineering Mathematics, Ch. 12.

3. W.A. Strauss. Partial Differential Equations: An Introduction. Wiley,
2007. ISBN: 9780470054567. A thorough and yet relatively compact
introduction.

4. R. Haberman. Applied Partial Differential Equations with Fourier
Series and Boundary Value Problems (Classic Version). PearsonModern
Classics for Advanced Mathematics. Pearson Education Canada, 2018.
ISBN: 9780134995434.

we observed in ?? that statements about

quantities like the divergence (e.g. continuity)

can be made about certain scalar and vector

fields. Such statements are governing equations

(e.g. the continuity equation) and they are

partial differential equations (PDEs) because the

quantities of interest called dependent variables

(e.g. density and velocity) are both temporally

and spatially varying (temporal and spatial

variables are therefore called independent

variables).

In this chapter, we explore the analytic solution

of PDEs. This is related to but distinct from the

numeric solution (i.e. simulation) of PDEs,

which is another important topic. Many PDEs

have no known analytic solution, so numeric

solution is the best available option.1 However,

it is important to note that the insight one can

gain from an analytic solution is often much

greater than that from a numeric solution. This

is easily understood when one considers that a

numeric solution is an approximation for a

specific set of initial and boundary conditions.

Typically, very little can be said of what would

happen in general, although this is often what

we seek to know. So, despite the importance of

numeric solution, one should always prefer an

analytic solution.

Three good texts on PDEs for further study are

Kreyszig,2 Strauss,3 and Haberman.4

