
pde Partial differential equations class Classifying PDEs p. 1

initial conditions

boundary conditions

well-posed problem

linear

nonlinear

order

second-order PDEs

pde.class Classifying PDEs

PDEs often have an infinite number of solutions;

however, when applying them to physical

systems, we usually assume there is a

deterministic or at least a probabilistic sequence

of events will occur. Therefore, we impose

additonal constraints on a PDE usually in the

form of

1. initial conditions, values of independent

variables over all space at an initial time

and

2. boundary conditions, values of

independent variables (or their

derivatives) over all time.

Ideally, imposing such conditions leaves us with

a well-posed problem, which has three aspects.

(Antonio Bove, F. (Ferruccio) Colombini and

Daniele Del Santo. Phase space analysis of

partial differential equations. eng. Progress in

nonlinear differential equations and their

applications ; v. 69. Boston ; Berlin: Birkhäuser,

2006. ISBN: 9780817645212, § 1.5)

existence There exists at least one solution.

uniqueness There exists at most one solution.

stability If the PDE, boundary conditons, or

initial conditions are changed slightly, the

solution changes only slightly.

As with ODEs, PDEs can be linear or nonlinear;

that is, the independent variables and their

derivatives can appear in only linear

combinations (linear PDE) or in one or more

nonlinear combination (nonlinear PDE). As with

ODEs, there are more known analytic solutions

to linear PDEs than nonlinear PDEs.

The order of a PDE is the order of its highest

partial derivative. A great many physical

models can be described by second-order PDEs

or systems thereof. Let u be an independent
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forcing function

homogeneous

scalar variable, a function ofm temporal and

spatial variables xi ∈ Rn. A second-order linear

PDE has the form, for coefficients α,β, γ, δ, real

functions of xi, (W.A. Strauss. Partial

Differential Equations: An Introduction. Wiley,

2007. ISBN: 9780470054567. A thorough and yet

relatively compact introduction. § 1.6)

n∑
i=1

n∑
j=1

αij∂
2
xixj

u︸ ︷︷ ︸
second-order terms

+

m∑
k=1

(γk∂xk
u+ δku)︸ ︷︷ ︸

first- and zeroth-order terms

= f(x1, · · · , xn)︸ ︷︷ ︸
forcing

(1)

where f is called a forcing function. When f is

zero, Eq. 1 is called homogeneous. We can

consider the coefficients αij to be components of

a matrix A with rows indexed by i and columns

indexed by j. There are four prominent classes

defined by the eigenvalues of A:

elliptic the eigenvalues all have the same sign,

parabolic the eigenvalues have the same sign

except one that is zero,

hyperbolic exactly one eigenvalue has the

opposite sign of the others, and

ultrahyperbolic at least two eigenvalues of

each signs.

The first three of these have received extensive

treatment. They are named after conic sections

due to the similarity the equations have with

polynomials when derivatives are considered

analogous to powers of polynomial variables.

For instance, here is a case of each of the first

three classes,

∂2xxu+ ∂2yyu = 0 (elliptic)

∂2xxu− ∂2yyu = 0 (hyperbolic)

∂2xxu− ∂tu = 0. (parabolic)

When A depends on xi, it may have multiple

classes across its domain. In general, this

equation and its associated initial and boundary
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cauchy-kowalevski theorem

cauchy problems

conditions do not comprise a well-posed

problem; however several special cases have

been shown to be well-posed. Thus far, the most

general statement of existence and uniqueness is

the cauchy-kowalevski theorem for cauchy

problems.


