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pde.sturm Sturm-liouville problems

Before we introduce an important solution
method for PDEs in Lec. pde.separation, we
consider an ordinary differential equation that
will arise in that method when dealing with a
single spatial dimension x: the sturm-liouville
(S-L) differential equation. Let p, q, o be
functions of x on open interval (a,b). Let X be
the dependent variable and A constant. The
regular S-L problem is the S-L ODE®

% (pX’) + qX+A0X =0

with boundary conditions

B1X(a)+ B2X'(a)
B3X(b) + B4X'(b)

0
0
with coefficients 3; € R. This is a type of
boundary value problem.

This problem has nontrivial solutions, called
eigenfunctions X, (x) withn € Z,
corresponding to specific values of A = A, called
eigenvalues.® There are several important

theorems proven about this (see Haberman?).
Of greatest interest to us are that

1. there exist an infinite number of
eigenfunctions X;, (unique within a
multiplicative constant),

2. there exists a unique corresponding real
eigenvalue A,, for each eigenfunction X,,,

3. the eigenvalues can be ordered as
M <A <--,

4. eigenfunction X;, has n — 1 zeros on open
interval (a,b),

5. the eigenfunctions X, form an orthogonal
basis with respect to weighting function o
such that any piecewise continuous
function f : [a,b] — R can be represented
by a generalized fourier series on [a, b].

sturm-liouville (S—L) differential equation

regular S—L problem

5. For the S-L problem to be regular, it has the additional constraints
that p,q, o are continuous and p,oc > 0 on [a,b]. This is
also sometimes called the sturm-liouville eigenvalue problem. See
Haberman (Haberman, Applied Partial Differential Equations with
Fourier Series and Boundary Value Problems (Classic Version), § 5.3)
for the more general (non-regular) S-L problem and Haberman (ibidem,
§ 7.4) for the multi-dimensional analog.

boundary value problems

eigenfunctions

eigenvalues

6. These eigenvalues are closely related to, but distinct from, the
“eigenvalues” that arise in systems of linear ODEs.

7. ibidem, § 5.3.
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This last theorem will be of particular interest in
Lec. pde.separation.

Types of boundary conditions

Boundary conditions of the sturm-liouville kind
2 have four sub-types:

dirichlet forjust 32,4 =0,

neumann forjust 1,83 =0,

robin for all ; # 0, and

mixed if B; =0, B3 £ 0;if B2 =0, P4 # 0.

There are many problems that are not regular
sturm-liouville problems. For instance, the
right-hand sides of Eq. 2 are zero, making them
homogeneous boundary conditions; however,
these can also be nonzero. Another case is
periodic boundary conditions:

Example pde.sturm-1

Consider the differential equation
X"+ MX=0

with dirichlet boundary conditions on the
boundary of the interval [0, L]

X(0)=0 and X(L)=0.

Solve for the eigenvalues and eigenfunctions.

This is a sturm-liouville problem, so we know
the eigenvalues are real. The well-known
general solutions to the ODE is

k1 +kox A=0

X(x) = . .
kie VAX 4 ko e IVAX  otherwise

. with real constants k;,k;. The solution must
- also satisfy the boundary conditions. Let’s

homogeneous boundary conditions

periodic boundary conditions

re: a sturm-liouville problem with dirichlet
boundary conditions
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- apply them to the case of A = 0 first:
X(0)=0=k1+k2(0)=0=%k1 =0
X(L)=0= %k +ka(L) =0 = ks = —kq /L.

Together, these imply ki = k, = 0, which

gives the trivial solution X(x) = 0, in which we

aren’t interested. We say, then, for nontrivial
solutions A # 0. Now let’s check A < 0. The
solution becomes
X(x) =kje” Al + koe IAIx
= k3 cosh(+/[Alx) + k4 sinh(1/|Alx)

where k3 and ks are real constants. Again
applying the boundary conditions:

However, sinh(y/|AL) # 0 for L > 0, so kg =
k3 = 0—again, the trivial solution. Now let’s
try A > 0. The solution can be written

X(x) = ks cos(VAx) + kg sin(VAx).

Applying the boundary conditions for this case:

Now, sin(vAL) = 0 for
VAL = nm =
nm\ 2
= ()

Therefore, the only nontrivial solutions that
satisfy both the ODE and the boundary
conditions are the eigenfunctions

Xn(x) = sin (ﬁx)

=sin (E )
with corresponding eigenvalues
nm\ 2
m=(T)

. Note that because A > 0, A; is the lowest
< eigenvalue.

X(0) =0 = k3 cosh(0) + k4 8inh(0) =0=k3+0=0=k3 =0
X(L) = 0 = 0cosh(y/JAIL) 4 kg sinh(y/JAIL) = 0 = k4 sinh(y/JA[L) = 0.

X(0) =0=kscos(0) +kgsin(0) =0=ks +0=0=ks5 =0
X(L) = 0 = 0cos(VAL) + kg sin(vVAL) = 0 = kg sin(vVAL) = 0.
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- Plotting the eigenfunctions

The following was generated from a Jupyter
notebook with the following filename and
kernel.

notebook filename: eigenfunctions_example_plot.ipynb

notebook kernel: python3

First, load some Python packages.

import numpy as np
import matplotlib.pyplot as plt
from IPython.display import display, Markdown, Latex

Set L = 1 and compute values for the first four
eigenvalues lambda_n and eigenfunctions X_n.

L=1

X

np.linspace(0,L,100)

n = np.linspace(1,4,4,dtype=int)
lambda_n = (n*np.pi/L)**2
X_n = np.zeros([len(n),len(x)])
for i,n_i in enumerate(n):

X_n[i,:] = np.sin(np.sqrt(lambda_n[i])*x)

Plot the eigenfunctions.

for i,n_i in enumerate(n):
plt.plot(
x,X_nl[i,:],
linewidth=2,label='n = '+str(n_i)
)
plt.legend()
plt.show() # display the plot
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We see that the fourth of the S-L. theorems
appears true: n — 1 zeros of X, exist on the
open interval (0, 1).




