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We are now ready to learn one of the most

important techniques for solving PDEs:

separation of variables. It applies only to linear

PDEs since it will require the principle of

superposition. Not all linear PDEs yield to this

solution technique, but several that are

important do.

The technique includes the following steps.

assume a product solution Assume the

solution can be written as a product

solution up: the product of functions of

each independent variable.

separate PDE Substitute up into the PDE and

rearrange such that at least one side of the

equation has functions of a single

independent variabe. If this is possible,

the PDE is called separable.

set equal to a constant Each side of the

equation depends on different

independent variables; therefore, they

must each equal the same constant, often

called −λ.

repeat separation, as needed If there are

more than two independent variables,

there will be an ODE in the separated

variable and a PDE (with one fewer

variables) in the other independent

variables. Attempt to separate the PDE

until only ODEs remain.

solve each boundary value problem Solve

each boundary value problem ODE,

ignoring the initial conditions for now.

solve the time variable ODE Solve for the

general solution of the time variable ODE,

sans initial conditions.

construct the product solution Multiply the

solution in each variable to construct the

product solution up. If the boundary
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eigenfunctions

superposition

value problems were sturm-liouville, the

product solution is a family of

eigenfunctions from which any function

can be constructed via a generalized

fourier series.

apply the initial condition The product

solutions individually usually do not meet

the initial condition. However, a

generalized fourier series of them nearly

always does. Superposition tells us a

linear combination of solutions to the PDE

and boundary conditions is also a

solution; the unique series that also

satisfies the initial condition is the unique

solution to the entire problem.

Example pde.separation-1 re: 1D diffusion equation

Consider the one-dimensional diffusion

equation PDEa

∂tu(t, x) = k∂
2
xxu(t, x) (1)

with real constant k, with dirichlet boundary

conditions on inverval x ∈ [0, L]

u(t, 0) = 0 (2a)

u(t, L) = 0, (2b)

and with initial condition

u(0, x) = f(x), (3)

where f is some piecewise continuous function

on [0, L].

a. For more on the diffusion or heat equation, see Haberman,
(Haberman, Applied Partial Differential Equations with Fourier
Series and Boundary Value Problems (Classic Version), § 2.3)
Kreyszig, (Kreyszig, Advanced Engineering Mathematics,
§ 12.5) and Strauss. (Strauss, Partial Differential Equations: An
Introduction, § 2.3)

Assume a product solution

First, we assume a product solution of the form

up(t, x) = T(t)X(x)where T and X are unknown
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functions on t > 0 and x ∈ [0, L].

Separate PDE

Second, we substitute the product solution into

Eq. 1 and separate variables:

T ′X = kTX ′′ ⇒ (4)

T ′

kT
=
X ′′

X
. (5)

So it is separable! Note that we chose to group

kwith T , which was arbitrary but conventional.

Set equal to a constant

Since these two sides depend on different

independent variables (t and x), they must

equal the same constant we call −λ, so we have

two ODEs:

T ′

kT
= −λ ⇒ T ′ + λkT = 0 (6)

X ′′

X
= −λ ⇒ X ′′ + λX = 0. (7)

Solve the boundary value problem

The latter of these equations with the

boundary conditions (2) is precisely the same

sturm-liouville boundary value problem

from Example pde.sturm-1, which had

eigenfunctions

Xn(x) = sin
(√

λnx
)

(8a)

= sin
(nπ
L
x
)

(8b)

with corresponding (positive) eigenvalues

λn =
(nπ
L

)2
. (9)

Solve the time variable ODE

The time variable ODE is homogeneous and has

the familiar general solution

T(t) = ce−kλt (10)
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with real constant c. However, the boundary

value problem restricted values of λ to λn, so

Tn(t) = ce
−k(nπ/L)2t. (11)

Construct the product solution

The product solution is

up(t, x) = Tn(t)Xn(x)

= ce−k(nπ/L)2t sin
(nπ
L
x
)
. (12)

This is a family of solutions that each satisfy

only exotically specific initial conditions.

Apply the initial condition

The initial condition is u(0, x) = f(x). The

eigenfunctions of the boundary value problem

form a fourier series that satisfies the initial

condition on the interval [0, L] if we extend

f to be periodic and odd over x (Kreyszig,

Advanced Engineering Mathematics, p. 550);

we call the extension f∗. The odd series

synthesis can be written

f∗(x) =

∞∑
n=1

bn sin
(nπ
L
x
)

(13)

where the fourier analysis gives

bn =
2

L

ˆ L

0

f∗(χ) sin
(nπ
L
χ
)
. (14)

So the complete solution is

u(t, x) =

∞∑
n=1

bne
−k(nπ/L)2t sin

(nπ
L
x
)
. (15)

Notice this satisfies the PDE, the boundary

conditions, and the initial condition!

Plotting solutions

If we want to plot solutions, we need to specify

an initial conditionu(0, x) = f∗(x) over [0, L]. We
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can choose anything piecewise continuous, but

for simplicity let’s let

f(x) = 1. (x ∈ [0, L])

The odd periodic extension is an odd square

wave. The integral (14) gives

bn =
4

nπ
(1− cos(nπ))

=

0 n even

4
nπ n odd.

(16)

Now we can write the solution as

u(t, x) =

∞∑
n=1,n odd

4

nπ
e−k(nπ/L)2t sin

(nπ
L
x
)
.

(17)

Plotting in Python

First, load some Python packages.

import numpy as np
import matplotlib.pyplot as plt
from IPython.display import display, Markdown, Latex

Set k = L = 1 and sumvalues for the first N terms
of the solution.

L = 1
k = 1
N = 100
x = np.linspace(0,L,300)
t = np.linspace(0,2*(L/np.pi)**2,100)
u_n = np.zeros([len(t),len(x)])
for n in range(N):
n = n+1 # because index starts at 0
if n % 2 == 0: # even

pass # already initialized to zeros
else: # odd

u_n += 4/(n*np.pi)*np.outer(
np.exp(-k*(n*np.pi/L)**2*t),
np.sin(n*np.pi/L*x)

)

Let’s first plot the initial condition.
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p = plt.figure();
plt.plot(x,u_n[0,:]);
plt.xlabel('space $x$')
plt.ylabel('$u(0,x)$')
plt.show()
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Now we plot the entire response.

p = plt.figure();
plt.contourf(t,x,u_n.T)
c = plt.colorbar()
c.set_label('$u(t,x)')
plt.xlabel('time $t$')
plt.ylabel('space $x$')
plt.show()
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We see the diffusive action proceeds as we

expected.

. Python code in this section was generated from a Jupyter
notebook named pde_separation_example_01.ipynb with a
python3 kernel.


