
pde Partial differential equations wave The 1D wave equation p. 1

wave equation

8. Kreyszig, Advanced Engineering Mathematics, § 12.9, 12.10.

9. Haberman, Applied Partial Differential Equations with Fourier Series
and Boundary Value Problems (Classic Version), § 4.5, 7.3.

pde.wave The 1D wave equation

The one-dimensional wave equation is the

linear PDE

∂2ttu(t, x) = c
2∂2xxu(t, x). (1)

with real constant c. This equation models such

phenomena as strings, fluids, sound, and light.

It is subject to initial and boundary conditions

and can be extended to multiple spatial

dimensions. For 2D and 3D examples in

rectangular and polar coordinates, see

Kreyszig8 and Haberman.9

Example pde.wave-1 re: vibrating string PDE solution by

separation of variablesConsider the one-dimensional wave equation

PDE

∂2ttu(t, x) = c
2∂2xxu(t, x) (2)

with real constant c and with dirichlet

boundary conditions on inverval x ∈ [0, L]

u(t, 0) = 0 and u(t, L) = 0, (3a)

and with initial conditions (we need two

because of the second time-derivative)

u(0, x) = f(x) and ∂tu(0, x) = g(x), (4)

where f and g are some piecewise continuous

functions on [0, L].

Assume a product solution

First, we assume a product solution of the form

up(t, x) = T(t)X(x)where T and X are unknown

functions on t > 0 and x ∈ [0, L].

pde Partial differential equations wave The 1D wave equation p. 2

Separate PDE

Second, we substitute the product solution into

Eq. 2 and separate variables:

T ′′X = c2TX ′′ ⇒ (5)

T ′′

c2T
=
X ′′

X
. (6)

So it is separable! Note that we chose to group

cwith T , which was arbitrary but conventional.

Set equal to a constant

Since these two sides depend on different

independent variables (t and x), they must

equal the same constant we call −λ, so we have

two ODEs:

T ′′

c2T
= −λ ⇒ T ′′ + λc2T = 0 (7)

X ′′

X
= −λ ⇒ X ′′ + λX = 0. (8)

Solve the boundary value problem

The latter of these equations with the

boundary conditions (3) is precisely the same

sturm-liouville boundary value problem

from Example pde.sturm-1, which had

eigenfunctions

Xn(x) = sin
(√

λnx
)

(9a)

= sin
(nπ
L
x
)

(9b)

with corresponding (positive) eigenvalues

λn =
(nπ
L

)2
. (10)

Solve the time variable ODE

The time variable ODE is homogeneous and,

with λ restricted by the reals by the boundary

value problem, has the familiar general solution

T(t) = k1 cos(c
√
λt) + k2 sin(c

√
λt) (11)

pde Partial differential equations wave The 1D wave equation p. 3

with real constants k1 and k2. However, the

boundary value problem restricted values of λ

to λn, so

Tn(t) = k1 cos
(cnπ
L
t
)
+ k2 sin

(cnπ
L
t
)
. (12)

Construct the product solution

The product solution is

up(t, x) = Tn(t)Xn(x)

= k1 sin
(nπ
L
x
)

cos
(cnπ
L
t
)
+ k2 sin

(nπ
L
x
)

sin
(cnπ
L
t
)
.

This is a family of solutions that each satisfy

only exotically specific initial conditions.

Apply the initial conditions

Recall that superposition tells us that any linear

combination of the product solution is also a

solution. Therefore,

u(t, x) =

∞∑
n=1

an sin
(nπ
L
x
)

cos
(cnπ
L
t
)
+ bn sin

(nπ
L
x
)

sin
(cnπ
L
t
)

(13)

is a solution. If an and bn are properly selected

to satisfy the initial conditions, Eq. 13 will be

the solution to the entire problem. Substituting

t = 0 into our potential solution gives

u(0, x) =

∞∑
n=1

an sin
(nπ
L
x
)

(14a)

∂tu(t, x)|t=0 =

∞∑
n=1

bn
cnπ

L
sin

(nπ
L
x
)
. (14b)

Let us extend f and g to be periodic and odd

over x; we call the extensions f∗ and g∗. From

Eq. 14, the intial conditions are satsified if

f∗(x) =

∞∑
n=1

an sin
(nπ
L
x
)

(15a)

g∗(x) =

∞∑
n=1

bn
cnπ

L
sin

(nπ
L
x
)
. (15b)

pde Partial differential equations wave The 1D wave equation p. 4

We identify these as two odd fourier syntheses.

The corresponding fourier analyses are

an =
2

L

ˆ L

0

f∗(χ) sin
(nπ
L
χ
)

(16a)

bn
cnπ

L
=
2

L

ˆ L

0

g∗(χ) sin
(nπ
L
χ
)

(16b)

So the complete solution is Eq. 13 with

components given by Eq. 16. Notice this

satisfies the PDE, the boundary conditions, and

the initial condition!

Discussion

It can be shown that this series solution is

equivalent to two traveling waves that are

interfering (see Habermana and Kreyszigb).

This is convenient because computing the

series solution exactly requires an infinite

summation. We show in the following section

that the approximation by partial summation

is still quite good.

Choosing specific initial conditions

If we want to plot solutions, we need to specify

initial conditions over [0, L]. Let’smodel a string

being suddenly struck from rest as

f(x) = 0 (17)

g(x) = δ(x− ∆L) (18)

where δ is the dirac delta distribution and ∆ ∈
[0, L] is a fraction of L representing the location

of the string being struck. The odd periodic

extension is an odd pulse train. The integrals

of (16) give

an = 0 (19a)

bn =
2

cnπ

ˆ L

0

δ(χ− ∆L) sin
(nπ
L
χ
)

dx

=
2

cnπ
sin(nπ∆). (sifting property)

pde Partial differential equations wave The 1D wave equation p. 5

Now we can write the solution as

u(t, x) =

∞∑
n=1

2

cnπ
sin(nπ∆) sin

(nπ
L
x
)

sin
(cnπ
L
t
)
.

(20)

Plotting in Python

First, load some Python packages.

import numpy as np
import matplotlib.pyplot as plt
from IPython.display import display, Markdown, Latex

Set c = L = 1 and sumvalues for the first N terms
of the solution for some striking location ∆.

Delta = 0.1 # 0 <= Delta <= L
L = 1
c = 1
N = 150
t = np.linspace(0,30*(L/np.pi)**2,100)
x = np.linspace(0,L,150)
t_b, x_b = np.meshgrid(t,x)
u_n = np.zeros([len(x),len(t)])
for n in range(N):
n = n+1 # because index starts at 0
u_n += 4/(c*n*np.pi)* \

np.sin(n*np.pi*Delta)* \
np.sin(c*n*np.pi/L*t_b)* \
np.sin(n*np.pi/L*x_b)

Let’s first plot some early snapshots of the

response.

import seaborn as sns
n_snaps = 7
sns.set_palette(
sns.diverging_palette(

240, 10, n=n_snaps, center="dark"
)

)

fig, ax = plt.subplots()
it = np.linspace(2,77,n_snaps,dtype=int)
for i in range(len(it)):
ax.plot(x,u_n[:,it[i]],label=f"t = {t[i]:.3f}");

lgd = ax.legend(
bbox_to_anchor=(1.05, 1),
loc='upper left'

pde Partial differential equations exe The 1D wave equation p. 6

)
plt.xlabel('space x')
plt.ylabel('$u(t,x)$')
plt.show()

0.0 0.2 0.4 0.6 0.8 1.0

space x

−1.0

−0.5

0.0

0.5

1.0

u
(t
,x

)

t = 0.000

t = 0.031

t = 0.061

t = 0.092

t = 0.123

t = 0.154

t = 0.184

Now we plot the entire response.

fig, ax = plt.subplots()
p = ax.contourf(t,x,u_n)
c = fig.colorbar(p,ax=ax)
c.set_label('$u(t,x)$')
plt.xlabel('time t')
plt.ylabel('space x')
plt.show()

0.0 0.5 1.0 1.5 2.0 2.5 3.0

time t

0.0

0.2

0.4

0.6

0.8

1.0

sp
ac

e
x

−1.2

−0.9

−0.6

−0.3

0.0

0.3

0.6

0.9

1.2

u
(t
,x

)

We see a wave develop and travel, reflecting

and inverting off each boundary.

a. Haberman, Applied Partial Differential Equationswith Fourier
Series and Boundary Value Problems (Classic Version), § 4.4.

b. Kreyszig, Advanced Engineering Mathematics, § 12.2.

b. Python code in this section was generated from a Jupyter
notebook named pde_separation_example_02.ipynb with a
python3 kernel.

