Gradient descent opt.grad

Consider a multivariate function $f : \mathbb{R}^n \to \mathbb{R}$ that represents some cost or value. This is called an objective function, and we often want to find an $X \in \mathbb{R}^n$ that yields f's extremum: minimum or maximum, depending on whichever is desirable.

It is important to note however that some functions have no finite extremum. Other functions have multiple. Finding a global extremum is generally difficult; however, many good methods exist for finding a local extremum: an extremum for some region $R \subset \mathbb{R}^n$.

The method explored here is called gradient descent. It will soon become apparent why it has this name.

Stationary points

Recall from basic calculus that a function f of a single variable had potential local extrema where df(x)/dx = 0. The multivariate version of this, for multivariate function f, is

$$\operatorname{grad} f = 0.$$
 (1)

A value X for which Eq. 1 holds is called a stationary point. However, as in the univariate case, a stationary point may not be a local extremum; in these cases, it called a saddle point.

Consider the hessian matrix H with values, for independent variables x_i ,

$$H_{ij} = \partial_{x_i x_i}^2 f. \tag{2}$$

For a stationary point X, the second partial derivative test tells us if it is a local maximum, local minimum, or saddle point:

minimum If H(X) is positive definite (all its eigenvalues are positive),

objective function extremum

global extremum

local extremum

aradient descent

stationary point

saddle point

hessian matrix

second partial derivative test

positive definite

X is a local minimum.

maximum If H(X) is negative definite (all its eigenvalues are negative),

X is a local maximum.

saddle If H(X) is indefinite (it has both positive and negative eigenvalues),X is a saddle point.

These are sometimes called tests for concavity: minima occur where f is convex and maxima where f is concave (i.e. where —f is convex). It turns out, however, that solving Eq. 1 directly for stationary points is generally hard. Therefore, we will typically use an iterative technique for estimating them.

The gradient points the way

Although Eq. 1 isn't usually directly useful for computing stationary points, it suggests iterative techniques that are. Several techniques rely on the insight that the gradient points toward stationary points. Recall from Lec. vecs.grad that grad f is a vector field that points in the direction of greatest increase in f. Consider starting at some point x_0 and wanting to move iteratively closer to a stationary point. So, if one is seeking a maximum of f, then choose x_1 to be in the direction of grad f. If one is seeking a minimum of f, then choose x_1 to be opposite the direction of grad f.

The question becomes: how far α should we go in (or opposite) the direction of the gradient? Surely too-small α will require more iteration and too-large α will lead to poor convergence or missing minima altogether. This framing of the problem is called line search. There are a few common methods for choosing α , called the step size, some more computationally efficient than others.

Two methods for choosing the step size are described below. Both are framed as

negative definite

indefinite

convex

concave

the gradient points toward stationary points

line search step size α

minimization methods, but changing the sign of the step turns them into maximization methods.

The classical method

Let

$$\mathbf{g}_{\mathbf{k}} = \operatorname{grad} \mathbf{f}(\mathbf{x}_{\mathbf{k}}), \tag{3}$$

the gradient at the algorithm's current estimate x_k of the minimum. The classical method of choosing α is to attempt to solve analytically for

$$\alpha_{k} = \operatorname*{argmin}_{\alpha} f(x_{k} - \alpha g_{k}).$$
 (4)

This solution approximates the function f as one varies α . It is approximate because as α varies, so should x. But even with α as the only variable, Eq. 4 may be difficult or impossible to solve. However, this is sometimes called the "optimal" choice for α . Here "optimality" refers not to practicality but to ideality. This method is rarely used to solve practical problems. The algorithm of the classical gradient descent method can be summarized in the pseudocode of Algorithm grad.1. It is described further in Kreyszig.¹

Algorithm grad.1 Classical gradient descent

```
1: procedure classical_minimizer(f,x_0,T)
 2:
            while \delta x > T do \triangleright until threshold T is met
                   \mathbf{g}_{\mathbf{k}} \leftarrow \operatorname{grad} \mathbf{f}(\mathbf{x}_{\mathbf{k}})
 3:
                   \alpha_k \leftarrow \operatorname{argmin}_{\alpha} f(\mathbf{x}_k - \alpha \mathbf{g}_k)
 4:
 5:
                   x_{k+1} \leftarrow x_k - \alpha_k g_k
                   \delta \mathbf{x} \leftarrow \|\mathbf{x}_{k+1} - \mathbf{x}_k\|
 6:
 7:
                   k \leftarrow k + 1
            end while
 8:
            return x_k
                                      b the threshold was reached
 9:
10: end procedure
```

The Barzilai and Borwein method

In practice, several non-classical methods are used for choosing step size α . Most of these

1. Kreyszig, Advanced Engineering Mathematics, § 22.1.

construct criteria for step sizes that are too small and too large and prescribe choosing some α that (at least in certain cases) must be in the sweet-spot in between. Barzilai and Borwein² developed such a prescription, which we now present.

Let $\Delta x_k = x_k - x_{k-1}$ and $\Delta g_k = g_k - g_{k-1}$. This method minimizes $\left\Vert \Delta x-\alpha\Delta g\right\Vert ^{2}$ by choosing

$$\alpha_{k} = \frac{\Delta x_{k} \cdot \Delta g_{k}}{\Delta g_{k} \cdot \Delta g_{k}}.$$
 (5)

The algorithm of this gradient descent method can be summarized in the pseudocode of Algorithm grad.2. It is described further in Barzilai and Borwein.³

Algorithm grad.2 Barzilai and Borwein gradient descent

```
1: procedure barzilai_minimizer(f,x0,T)
            while \delta x > T do \triangleright until threshold T is met
 2:
                   g_k \leftarrow \operatorname{grad} f(x_k)
 3:
 4:
                   \Delta g_k \leftarrow g_k - g_{k-1}
                   \begin{array}{l} \Delta x_k \leftarrow x_k - x_{k-1} \\ \alpha_k \leftarrow \frac{\Delta x_k \cdot \Delta g_k}{\Delta g_k \cdot \Delta g_k} \end{array}
 5:
 6:
                   x_{k+1} \leftarrow x_k - \alpha_k g_k
 7:
                   \delta x \leftarrow \|x_{k+1} - x_k\|
 8:
                   k \leftarrow k + 1
 9:
            end while
10:
            return x_k
                                      b the threshold was reached
11:
12: end procedure
```

2. Jonathan Barzilai and Jonathan M. Borwein. ?Two-Point Step Size Gradient Methods? inIMA Journal of Numerical Analysis: 8.1 (january 1988), pages 141–148. issn: 0272-4979. doi: 10.1093/imanum/8.1. 141. This includes an innovative line search method.

3. ibidem.

Example opt.grad-1

Consider the functions (a) $f_1 : \mathbb{R}^2 \to \mathbb{R}$ and (b) $f_2: \mathbb{R}^2 \to \mathbb{R}$ defined as

$$f_1(x) = (x_1 - 25)^2 + 13(x_2 + 10)^2$$
 (6)

$$f_2(x) = \frac{1}{2}x \cdot Ax - b \cdot x \tag{7}$$

where

$$A = \begin{bmatrix} 20 & 0 \\ 0 & 10 \end{bmatrix} \quad \text{and} \tag{8a}$$

$$b = \begin{bmatrix} 1 & 1 \end{bmatrix}^{\top}. \tag{8b}$$

re: Barzilai and Borwein gradient descent

Use the method of Barzilai and Borwein^a starting at some x_0 to find a minimum of each function.

a. Barzilai and Borwein, ?Two-Point Step Size Gradient Methods?

First, load some Python packages.

```
from sympy import *
import numpy as np
import matplotlib.pyplot as plt
from IPython.display import display, Markdown, Latex
from tabulate import tabulate
```

```
ModuleNotFoundError Traceback

→ (most recent call last)

/tmp/ipykernel_1136564/820890629.py in <module>
3 import matplotlib.pyplot as plt
4 from IPython.display import display,

→ Markdown, Latex
----> 5 from tabulate import tabulate

ModuleNotFoundError: No module named 'tabulate'
```

We begin by writing a class gradient_descent_min to perform the gradient descent. This is not optimized for speed.

```
class gradient_descent_min():
    """ A Barzilai and Borwein gradient descent class.

Inputs:
    * f: Python function of x variables
    * x: list of symbolic variables (eg [x1, x2])
    * x0: list of numeric initial guess of a min of f
    * T: step size threshold for stopping the descent

To execute the gradient descent call descend method

nb: This is only for gradients in cartesian
    coordinates! Further work would be to implement
    this in multiple or generalized coordinates.
    See the grad method below for implementation.

"""

def __init__(self,f,x,x0,T):
    self.f = f
```

```
self.x = Array(x)
  self.x0 = np.array(x0)
 self.T = T
 self.n = len(x0) # size of x
 self.g = lambdify(x,self.grad(f,x),'numpy')
  self.xk = np.array(x0)
  self.table = {}
def descend(self):
  # unpack variables
  f = self.f
  x = self.x
  x0 = self.x0
 T = self.T
  g = self.g
  # initialize variables
  x_k = x0
  dx = 2*T \# can't be zero
  x_{m1} = .9*x0-.1 \# can't equal x0
  g_{m1} = np.array(g(*x_km1))
  N_{max} = 100 \# max iterations
  table_data = [[N,x0,np.array(g(*x0)),0]]
  while (dx > T \text{ and } N < N_max) \text{ or } N < 1:
   N += 1 # increment index
    g_k = np.array(g(*x_k))
    dg_k = g_k - g_{m1}
    dx_k = x_k - x_{km1}
   alpha_k = abs(dx_k.dot(dg_k)/dg_k.dot(dg_k))
    x_km1 = x_k # store
    x_k = x_k - alpha_k*g_k
    # save
    table_data.append([N,x_k,g_k,alpha_k])
    self.xk = np.vstack((self.xk,x_k))
    # store other variables
    g_km1 = g_k
    dx = np.linalg.norm(x_k - x_km1) # check
  self.tabulater(table_data)
def tabulater(self,table_data):
  np.set_printoptions(precision=2)
  tabulate.LATEX_ESCAPE_RULES={}
  self.table['python'] = tabulate(
   table_data,
    headers=["N","x_k","g_k","alpha"],
  self.table['latex'] = tabulate(
    table_data,
    headers=[
      "$N$","$\\bm{x}_k$","$\\bm{g}_k$","$\\alpha$"
    tablefmt="latex_raw",
def grad(self,f,x): # cartesian coord's gradient
```

grad Gradient descent p.5

```
opt Optimization
      return derive_by_array(f(x),x)
First, consider f_1.
  var('x1 x2')
  x = Array([x1,x2])
  f1 = lambda x: (x[0]-25)**2 + 13*(x[1]+10)**2
  gd = gradient_descent_min(f=f1,x=x,x0=[-50,40],T=1e-\$)
 Perform the gradient descent.
  gd.descend()
  NameError
                                               Traceback
  \hookrightarrow (most recent call last)
  /tmp/ipykernel_1136564/2845911865.py in <module>
  ----> 1 gd.descend()
  /tmp/ipykernel_1136564/2142203784.py in
  \hookrightarrow descend(self)
       55
                g_km1 = g_k
       56
                dx = np.linalg.norm(x_k - x_km1) #
       \hookrightarrow check
```

```
---> 57
        self.tabulater(table_data)
   58
   59 def tabulater(self,table_data):
```

```
/tmp/ipykernel_1136564/2142203784.py in
\hookrightarrow tabulater(self, table_data)
    59 def tabulater(self,table_data):
    60
         np.set_printoptions(precision=2)
---> 61 tabulate.LATEX_ESCAPE_RULES={}
    62 self.table['python'] = tabulate(
    63
            table_data,
```

NameError: name 'tabulate' is not defined

Print the interesting variables.

```
print(gd.table['python'])
KeyError
                                                          Traceback
\hookrightarrow \quad (\texttt{most recent call last})
```

```
/tmp/ipykernel_1136564/1459049274.py in <module>
----> 1 Latex(gd.table['latex'])
KeyError: 'latex'
```

Now let's lambdify the function f1 so we can plot.

```
f1_lambda = lambdify((x1,x2),f1(x),'numpy')
```

Now let's plot a contour plot with the gradient descent overlaid.

```
fig, ax = plt.subplots()
# contour plot
X1 = np.linspace(-100, 100, 100)
X2 = np.linspace(-50,50,100)
X1, X2 = np.meshgrid(X1,X2)
F1 = f1_lambda(X1,X2)
plt.contourf(X1,X2,F1)
plt.colorbar()
# gradient descent plot
from mpl_toolkits.mplot3d import Axes3D
{\tt from\ matplotlib.collections\ import\ LineCollection}
xX1 = gd.xk[:,0]
xX2 = gd.xk[:,1]
points = np.array([xX1, xX2]).T.reshape(-1, 1, 2)
segments = np.concatenate(
  [points[:-1], points[1:]], axis=1
lc = LineCollection(
  segments,
  cmap=plt.get_cmap('Reds')
lc.set_array(np.linspace(0,1,len(xX1))) # color segs
lc.set_linewidth(3)
ax.autoscale(False) # avoid the scatter changing lims
ax.add_collection(lc)
ax.scatter(
 xX1,xX2,
 zorder=1,
 marker="o",
 color=plt.cm.Reds(np.linspace(0,1,len(xX1))),
  edgecolor='none'
plt.show()
```

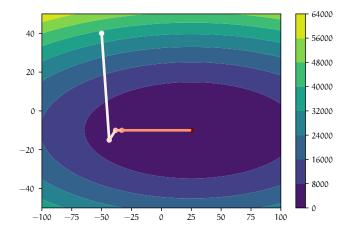


Figure grad.1:

Now consider f₂.

```
A = Matrix([[10,0],[0,20]])
b = Matrix([[1,1]])
def f2(x):
  X = Array([x]).tomatrix().T
  return 1/2*X.dot(A*X) - b.dot(X)
 gd = gradient_descent_min(f=f2,x=x,x0=[50,-40],T=1e-\$)
Perform the gradient descent.
 gd.descend()
 NameError
                                           Traceback
 \hookrightarrow (most recent call last)
 /tmp/ipykernel_1136564/2845911865.py in <module>
 ----> 1 gd.descend()
 /tmp/ipykernel_1136564/2142203784.py in
 \hookrightarrow descend(self)
     55
            g_km1 = g_k
     56
              dx = np.linalg.norm(x_k - x_km1) #
     \hookrightarrow \quad \mathtt{check}
 ---> 57
          self.tabulater(table_data)
     58
     59 def tabulater(self,table_data):
 /tmp/ipykernel_1136564/2142203784.py in
 \hookrightarrow tabulater(self, table_data)
     59 def tabulater(self,table_data):
     60
          np.set_printoptions(precision=2)
 ---> 61
           tabulate.LATEX_ESCAPE_RULES={}
     62
          self.table['python'] = tabulate(
     63
             table_data,
NameError: name 'tabulate' is not defined
Print the interesting variables.
 print(gd.table['python'])
KeyError
                                           Traceback
 /tmp/ipykernel_1136564/1459049274.py in <module>
 ---> 1 Latex(gd.table['latex'])
```

```
KeyError: 'latex'
```

Now let's lambdify the function f2 so we can plot.

```
f2_lambda = lambdify((x1,x2),f2(x),'numpy')
```

Now let's plot a contour plot with the gradient descent overlaid.

```
fig, ax = plt.subplots()
# contour plot
X1 = np.linspace(-100,100,100)
X2 = np.linspace(-50,50,100)
X1, X2 = np.meshgrid(X1,X2)
F2 = f2_{lambda}(X1,X2)
plt.contourf(X2,X1,F2)
plt.colorbar()
# gradient descent plot
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.collections import LineCollection
xX1 = gd.xk[:,0]
xX2 = gd.xk[:,1]
points = np.array([xX1, xX2]).T.reshape(-1, 1, 2)
segments = np.concatenate(
  [points[:-1], points[1:]], axis=1
lc = LineCollection(
  segments,
  cmap=plt.get_cmap('Reds')
lc.set_array(np.linspace(0,1,len(xX1))) # color segs
lc.set_linewidth(3)
ax.autoscale(False) # avoid the scatter changing lims
ax.add_collection(lc)
ax.scatter(
 xX1,xX2,
 zorder=1,
 marker="o",
  color=plt.cm.Reds(np.linspace(0,1,len(xX1))),
  edgecolor='none'
plt.show()
```

[.] Python code in this section was generated from a Jupyter notebook named gradient_descent.ipynb with a python3 kernel.