
opt Optimization grad Gradient descent p. 1

objective function

extremum

global extremum

local extremum

gradient descent

stationary point

saddle point

hessian matrix

second partial derivative test

positive definite

opt.grad Gradient descent

Consider a multivariate function f : Rn → R that

represents some cost or value. This is called an

objective function, and we often want to find an

X ∈ Rn that yields f’s extremum: minimum or

maximum, depending on whichever is

desirable.

It is important to note however that some

functions have no finite extremum. Other

functions have multiple. Finding a global

extremum is generally difficult; however, many

good methods exist for finding a local

extremum: an extremum for some region

R ⊂ Rn.

The method explored here is called gradient

descent. It will soon become apparent why it

has this name.

Stationary points

Recall from basic calculus that a function f of a

single variable had potential local extrema

where df(x)/dx = 0. The multivariate version of
this, for multivariate function f, is

grad f = 0. (1)

A value X for which Eq. 1 holds is called a

stationary point. However, as in the univariate

case, a stationary point may not be a local

extremum; in these cases, it called a saddle

point.

Consider the hessian matrix Hwith values, for

independent variables xi,

Hij = ∂
2
xixj

f. (2)

For a stationary point X, the second partial

derivative test tells us if it is a local maximum,

local minimum, or saddle point:

minimum If H(X) is positive definite (all its

eigenvalues are positive),

opt Optimization grad Gradient descent p. 1

negative definite

indefinite

convex

concave

the gradient points toward stationary points

line search

step size α

X is a local minimum.

maximum If H(X) is negative definite (all its

eigenvalues are negative),

X is a local maximum.

saddle If H(X) is indefinite (it has both positive

and negative eigenvalues),

X is a saddle point.

These are sometimes called tests for concavity:

minima occur where f is convex and maxima

where f is concave (i.e. where −f is convex).

It turns out, however, that solving Eq. 1 directly

for stationary points is generally hard.

Therefore, we will typically use an iterative

technique for estimating them.

The gradient points the way

Although Eq. 1 isn’t usually directly useful for

computing stationary points, it suggests

iterative techniques that are. Several techniques

rely on the insight that the gradient points

toward stationary points. Recall from

Lec. vecs.grad that grad f is a vector field that
points in the direction of greatest increase in f.

Consider starting at some point x0 and wanting

to move iteratively closer to a stationary point.

So, if one is seeking a maximum of f, then

choose x1 to be in the direction of grad f. If one
is seeking a minimum of f, then choose x1 to be

opposite the direction of grad f.
The question becomes: how far α should we go

in (or opposite) the direction of the gradient?

Surely too-small αwill require more iteration

and too-large αwill lead to poor convergence or

missing minima altogether. This framing of the

problem is called line search. There are a few

common methods for choosing α, called the step

size, some more computationally efficient than

others.

Two methods for choosing the step size are

described below. Both are framed as

opt Optimization grad Gradient descent p. 1

1. Kreyszig, Advanced Engineering Mathematics, § 22.1.

minimization methods, but changing the sign of

the step turns them into maximization methods.

The classical method

Let

gk = grad f(xk), (3)

the gradient at the algorithm’s current estimate

xk of the minimum. The classical method of

choosing α is to attempt to solve analytically for

αk = argmin
α

f(xk − αgk). (4)

This solution approximates the function f as one

varies α. It is approximate because as α varies,

so should x. But even with α as the only

variable, Eq. 4 may be difficult or impossible to

solve. However, this is sometimes called the

“optimal” choice for α. Here “optimality” refers

not to practicality but to ideality. This method is

rarely used to solve practical problems.

The algorithm of the classical gradient descent

method can be summarized in the pseudocode

of Algorithm grad.1. It is described further in

Kreyszig.1

Algorithm grad.1 Classical gradient descent

1: procedure classical_minimizer(f,x0,T)
2: while δx > T do . until threshold T is met
3: gk ← grad f(xk)
4: αk ← argminα f(xk − αgk)

5: xk+1 ← xk − αkgk

6: δx← ‖xk+1 − xk‖
7: k← k+ 1

8: end while
9: return xk . the threshold was reached
10: end procedure

The Barzilai and Borwein method

In practice, several non-classical methods are

used for choosing step size α. Most of these

opt Optimization grad Gradient descent p. 2

2. Jonathan Barzilai and Jonathan M. Borwein. ?Two-Point Step Size
Gradient Methods? inIMA Journal of Numerical Analysis: 8.1 (january
1988), pages 141–148. issn: 0272-4979. doi: 10.1093/imanum/8.1.
141. This includes an innovative line search method.

3. ibidem.

construct criteria for step sizes that are too small

and too large and prescribe choosing some α

that (at least in certain cases) must be in the

sweet-spot in between. Barzilai and Borwein2

developed such a prescription, which we now

present.

Let ∆xk = xk − xk−1 and ∆gk = gk − gk−1. This

method minimizes ‖∆x− α∆g‖2 by choosing

αk =
∆xk · ∆gk

∆gk · ∆gk
. (5)

The algorithm of this gradient descent method

can be summarized in the pseudocode of

Algorithm grad.2. It is described further in

Barzilai and Borwein.3

Algorithm grad.2 Barzilai and Borwein gradient
descent
1: procedure barzilai_minimizer(f,x0,T)
2: while δx > T do . until threshold T is met
3: gk ← grad f(xk)
4: ∆gk ← gk − gk−1

5: ∆xk ← xk − xk−1

6: αk ← ∆xk·∆gk

∆gk·∆gk

7: xk+1 ← xk − αkgk

8: δx← ‖xk+1 − xk‖
9: k← k+ 1

10: end while
11: return xk . the threshold was reached
12: end procedure

Example opt.grad-1 re: Barzilai and Borwein gradient descent

Consider the functions (a) f1 : R2 → R and (b)

f2 : R2 → R defined as

f1(x) = (x1 − 25)2 + 13(x2 + 10)2 (6)

f2(x) =
1

2
x ·Ax− b · x (7)

where

A =

[
20 0

0 10

]
and (8a)

b =
[
1 1

]>
. (8b)

https://doi.org/10.1093/imanum/8.1.141
https://doi.org/10.1093/imanum/8.1.141

opt Optimization grad Gradient descent p. 3

Use the method of Barzilai and Borweina

starting at some x0 to find a minimum of each

function.

a. Barzilai and Borwein, ?Two-Point Step SizeGradientMethods?

First, load some Python packages.

from sympy import *
import numpy as np
import matplotlib.pyplot as plt
from IPython.display import display, Markdown, Latex
from tabulate import tabulate

ModuleNotFoundError Traceback
(most recent call last)↪→

/tmp/ipykernel_1136564/820890629.py in <module>
3 import matplotlib.pyplot as plt
4 from IPython.display import display,

Markdown, Latex↪→

----> 5 from tabulate import tabulate

ModuleNotFoundError: No module named 'tabulate'

We begin by writing a class

gradient_descent_min to perform the

gradient descent. This is not optimized for

speed.

class gradient_descent_min():
""" A Barzilai and Borwein gradient descent class.

Inputs:
* f: Python function of x variables
* x: list of symbolic variables (eg [x1, x2])
* x0: list of numeric initial guess of a min of f
* T: step size threshold for stopping the descent

To execute the gradient descent call descend method.

nb: This is only for gradients in cartesian
coordinates! Further work would be to implement
this in multiple or generalized coordinates.
See the grad method below for implementation.

"""

def __init__(self,f,x,x0,T):
self.f = f

opt Optimization grad Gradient descent p. 4

self.x = Array(x)
self.x0 = np.array(x0)
self.T = T
self.n = len(x0) # size of x
self.g = lambdify(x,self.grad(f,x),'numpy')
self.xk = np.array(x0)
self.table = {}

def descend(self):
unpack variables
f = self.f
x = self.x
x0 = self.x0
T = self.T
g = self.g
initialize variables
N = 0
x_k = x0
dx = 2*T # can't be zero
x_km1 = .9*x0-.1 # can't equal x0
g_km1 = np.array(g(*x_km1))
N_max = 100 # max iterations
table_data = [[N,x0,np.array(g(*x0)),0]]
while (dx > T and N < N_max) or N < 1:
N += 1 # increment index
g_k = np.array(g(*x_k))
dg_k = g_k - g_km1
dx_k = x_k - x_km1
alpha_k = abs(dx_k.dot(dg_k)/dg_k.dot(dg_k))
x_km1 = x_k # store
x_k = x_k - alpha_k*g_k
save
table_data.append([N,x_k,g_k,alpha_k])
self.xk = np.vstack((self.xk,x_k))
store other variables
g_km1 = g_k
dx = np.linalg.norm(x_k - x_km1) # check

self.tabulater(table_data)

def tabulater(self,table_data):
np.set_printoptions(precision=2)
tabulate.LATEX_ESCAPE_RULES={}
self.table['python'] = tabulate(
table_data,
headers=["N","x_k","g_k","alpha"],

)
self.table['latex'] = tabulate(
table_data,
headers=[

"N","$\\bm{x}_k$","$\\bm{g}_k$","$\\alpha$"
],
tablefmt="latex_raw",

)

def grad(self,f,x): # cartesian coord's gradient

opt Optimization grad Gradient descent p. 5

return derive_by_array(f(x),x)

First, consider f1.

var('x1 x2')
x = Array([x1,x2])
f1 = lambda x: (x[0]-25)**2 + 13*(x[1]+10)**2
gd = gradient_descent_min(f=f1,x=x,x0=[-50,40],T=1e-8)

Perform the gradient descent.

gd.descend()

NameError Traceback
(most recent call last)↪→

/tmp/ipykernel_1136564/2845911865.py in <module>
----> 1 gd.descend()

/tmp/ipykernel_1136564/2142203784.py in
descend(self)↪→

55 g_km1 = g_k
56 dx = np.linalg.norm(x_k - x_km1) #

check↪→

---> 57 self.tabulater(table_data)
58
59 def tabulater(self,table_data):

/tmp/ipykernel_1136564/2142203784.py in
tabulater(self, table_data)↪→

59 def tabulater(self,table_data):
60 np.set_printoptions(precision=2)

---> 61 tabulate.LATEX_ESCAPE_RULES={}
62 self.table['python'] = tabulate(
63 table_data,

NameError: name 'tabulate' is not defined

Print the interesting variables.

print(gd.table['python'])

KeyError Traceback
(most recent call last)↪→

opt Optimization grad Gradient descent p. 6

/tmp/ipykernel_1136564/1459049274.py in <module>
----> 1 Latex(gd.table['latex'])

KeyError: 'latex'

Now let’s lambdify the function f1 so we can

plot.

f1_lambda = lambdify((x1,x2),f1(x),'numpy')

Now let’s plot a contour plot with the gradient

descent overlaid.

fig, ax = plt.subplots()
contour plot
X1 = np.linspace(-100,100,100)
X2 = np.linspace(-50,50,100)
X1, X2 = np.meshgrid(X1,X2)
F1 = f1_lambda(X1,X2)
plt.contourf(X1,X2,F1)
plt.colorbar()
gradient descent plot
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.collections import LineCollection
xX1 = gd.xk[:,0]
xX2 = gd.xk[:,1]
points = np.array([xX1, xX2]).T.reshape(-1, 1, 2)
segments = np.concatenate(
[points[:-1], points[1:]], axis=1

)
lc = LineCollection(
segments,
cmap=plt.get_cmap('Reds')

)
lc.set_array(np.linspace(0,1,len(xX1))) # color segs
lc.set_linewidth(3)
ax.autoscale(False) # avoid the scatter changing lims
ax.add_collection(lc)
ax.scatter(
xX1,xX2,
zorder=1,
marker="o",
color=plt.cm.Reds(np.linspace(0,1,len(xX1))),
edgecolor='none'

)
plt.show()

−100 −75 −50 −25 0 25 50 75 100

−40

−20

0

20

40

0

8000

16000

24000

32000

40000

48000

56000

64000

Figure grad.1:Now consider f2.

opt Optimization grad Gradient descent p. 7

A = Matrix([[10,0],[0,20]])
b = Matrix([[1,1]])
def f2(x):
X = Array([x]).tomatrix().T
return 1/2*X.dot(A*X) - b.dot(X)

gd = gradient_descent_min(f=f2,x=x,x0=[50,-40],T=1e-8)

Perform the gradient descent.

gd.descend()

NameError Traceback
(most recent call last)↪→

/tmp/ipykernel_1136564/2845911865.py in <module>
----> 1 gd.descend()

/tmp/ipykernel_1136564/2142203784.py in
descend(self)↪→

55 g_km1 = g_k
56 dx = np.linalg.norm(x_k - x_km1) #

check↪→

---> 57 self.tabulater(table_data)
58
59 def tabulater(self,table_data):

/tmp/ipykernel_1136564/2142203784.py in
tabulater(self, table_data)↪→

59 def tabulater(self,table_data):
60 np.set_printoptions(precision=2)

---> 61 tabulate.LATEX_ESCAPE_RULES={}
62 self.table['python'] = tabulate(
63 table_data,

NameError: name 'tabulate' is not defined

Print the interesting variables.

print(gd.table['python'])

KeyError Traceback
(most recent call last)↪→

/tmp/ipykernel_1136564/1459049274.py in <module>
----> 1 Latex(gd.table['latex'])

opt Optimization lin Gradient descent p. 8

KeyError: 'latex'

Now let’s lambdify the function f2 so we can

plot.

f2_lambda = lambdify((x1,x2),f2(x),'numpy')

Now let’s plot a contour plot with the gradient

descent overlaid.

fig, ax = plt.subplots()
contour plot
X1 = np.linspace(-100,100,100)
X2 = np.linspace(-50,50,100)
X1, X2 = np.meshgrid(X1,X2)
F2 = f2_lambda(X1,X2)
plt.contourf(X2,X1,F2)
plt.colorbar()
gradient descent plot
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.collections import LineCollection
xX1 = gd.xk[:,0]
xX2 = gd.xk[:,1]
points = np.array([xX1, xX2]).T.reshape(-1, 1, 2)
segments = np.concatenate(
[points[:-1], points[1:]], axis=1

)
lc = LineCollection(
segments,
cmap=plt.get_cmap('Reds')

)
lc.set_array(np.linspace(0,1,len(xX1))) # color segs
lc.set_linewidth(3)
ax.autoscale(False) # avoid the scatter changing lims
ax.add_collection(lc)
ax.scatter(
xX1,xX2,
zorder=1,
marker="o",
color=plt.cm.Reds(np.linspace(0,1,len(xX1))),
edgecolor='none'

)
plt.show()

. Python code in this section was generated from a Jupyter
notebook named gradient_descent.ipynb with a python3
kernel.

