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opt.lin Constrained linear optimization

Consider a linear objective function f : Rn → R
with variables xi in vector x and coefficients ci

in vector c:

f(x) = c · x (1)

subject to the linear constraints—restrictions on

xi—

Ax 6 a, (2a)

Bx = b, and (2b)

l 6 x 6 u (2c)

where A and B are constant matrices and

a,b, l,u are n-vectors. This is one formulation

of what is called a linear programming problem.

Usually we want to maximize f over the

constraints. Such problems frequently arise

throughout engineering, for instance in

manufacturing, transportation, operations, etc.

They are called constrained because there are

constraints on x; they are called linear because

the objective function and the constraints are

linear.

We call a pair (x, f(x)) for which x satisfies Eq. 2

a feasible solution. Of course, not every feasible

solution is optimal: a feasible solution is optimal

iff there exists no other feasible solution for

which f is greater (assuming we’re maximizing).

We call the vector subspace of feasible solutions

S ⊂ Rn.

Feasible solutions form a polytope

Consider the effect of the constraints. Each of

the equalities and inequalities defines a linear

hyperplane in Rn (i.e. a linear subspace of

dimension n− 1): either as a boundary of S

(inequality) or as a restriction of S to the

hyperplane. When joined, these hyperplanes

are the boundary of S (equalities restrict S to
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lower dimension). So we see that each of the

boundaries of S is flat, which makes S a polytope

(in R2, a polygon). What makes this especially

interesting is that polytopes have vertices where

the hyperplanes intersect. Solutions at the

vertices are called basic feasible solutions.

Only the vertices matter

Our objective function f is linear, so for some

constant h, f(x) = h defines a level set that is

itself a hyperplane H in Rn. If this hyperplane

intersects S at a point x, (x, f(x) = h) is the

corresponding solution. There are three

possibilities when H intersects S:

1. H ∩ S is a vertex of S,
2. H ∩ S is a boundary hyperplane of S, or
3. H ∩ S slices through the interior of S.

However, this third option implies that there

exists a level set G corresponding to f(x) = g

such that G intersects S and g > h, so solutions

on H ∩ S are not optimal. (We have not proven

this, but it may be clear from our progression.)

We conclude that either the first or second case

must be true for optimal solutions. And notice

that in both cases, a (potentially optimal)

solution occurs at at least one vertex. The key

insight, then, is that an optimal solution occurs

at a vertex of S.

This means we don’t need to search all of S, or

even its boundary: we need only search the

vertices. Helpful as this is, it restricts us down

to
(

n
# constraints

)
potentially optimal

solutions—usually still too many to search in a

naïve way. In Lec. opt.simplex, this is mitigated

by introducing a powerful searching method.
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