
opt Optimization simplex The simplex algorithm p. 1

simplex algorithm

4. Another Python package pulp (PuLP) is probably more popular for
linear programming; however, we choose scipy.optimize because it
has applications beyond linear programming.

opt.simplex The simplex algorithm

The simplex algorithm (or “method”) is an

iterative technique for finding an optimal

solution of the linear programming problem of

Eqs. 1 and 2. The details of the algorithm are

somewhat involved, but the basic idea is to start

at a vertex of the feasible solution space S and

traverse an edge of the polytope that leads to

another vertex with a greater value of f. Then,

repeat this process until there is no neighboring

vertex with a greater value of f, at which point

the solution is guaranteed to be optimal.

Rather than present the details of the algorithm,

we choose to show an example using Python.

There have been some improvements on the

original algorithm that have been implemented

into many standard software packages,

including Python’s scipy package
(Pauli Virtanen andothers. ?SciPy

1.0–Fundamental Algorithms for Scientific

Computing in Python? inarXiv e-prints:

arXiv:1907.10121 [july 2019], arXiv:1907.10121)

module scipy.optimize.4

Example opt.simplex-1 re: simplex method using scipy.optimize

Maximize the objective function

f(x) = c · x (1a)

for x ∈ R2 and

c =
[
5 2

]>
(1b)

subject to constraints

0 6 x1 6 10 (2a)

−5 6 x2 6 15 (2b)

4x1 + x2 6 40 (2c)

x1 + 3x2 6 35 (2d)

−8x1 − x2 > −75. (2e)

https://pypi.org/project/PuLP/

opt Optimization simplex The simplex algorithm p. 2

First, load some Python packages.

from scipy.optimize import linprog
import numpy as np
import matplotlib.pyplot as plt
from IPython.display import display, Markdown, Latex

Encoding the problem

Before we can use linprog, we must first

encode Eqs. 1 and 2 into a form linprog will

recognize. We begin with f, which we can write

as c · xwith the coefficients of c as follows.

c = [-5, -2] # negative to find max

We’ve negated each constant because linprog
minimizes f and we want to maximize f. Now

let’s encode the inequality constraints. We

will write the left-hand side coefficients in the

matrix A and the right-hand-side values in

vector a such that

Ax 6 a. (3)

Notice that one of our constraint inequalities is

> instead of 6. We can flip this by multiplying

the inequality by −1. We use simple lists to

encode A and a.

A = [
[4, 1],
[1, 3],
[8, 1]

]
a = [40, 35, 75]

Now we need to define the lower l and upper

u bounds of x. The function linprog expects

these to be in a single list of lower- and upper-

bounds of each xi.

lu = [
(0, 10),
(-5,15),

]

opt Optimization simplex The simplex algorithm p. 3

We want to keep track of each step linprog
takes. We can access these by defining a

function callback, to be passed to linprog.

x = [] # for storing the steps
def callback(res): # called at each step

global x
print(f"nit = {res.nit}, x_k = {res.x}")
x.append(res.x.copy()) # store

Now we need to call linprog. We don’t have

any equality constraints, so we need only use

the keyword arguments A_ub=A and b_ub=a.
For demonstration purposes, we tell it to use

the 'simplex' method, which is not as good as
its other methods, which use better algorithms

based on the simplex.

res = linprog(
c,
A_ub=A,
b_ub=a,
bounds=lu,
method='simplex',
callback=callback

)

x = np.array(x)

nit = 0, x_k = [0. -5.]
nit = 1, x_k = [10. -5.]
nit = 2, x_k = [8.75 5.]
nit = 3, x_k = [7.72727273 9.09090909]
nit = 4, x_k = [7.72727273 9.09090909]
nit = 5, x_k = [7.72727273 9.09090909]
nit = 5, x_k = [7.72727273 9.09090909]

So the optimal solution (x, f(x)) is as follows.

print(f"optimum x: {res.x}")
print(f"optimum f(x): {-res.fun}")

optimum x: [7.72727273 9.09090909]
optimum f(x): 56.81818181818182

The last point was repeated

1. once because there was no adjacent vertex

with greater f(x) and

opt Optimization simplex The simplex algorithm p. 4

2. twice because the algorithm calls

‘callback‘ twice on the last step.

Plotting

When the solution space is in R2, it is helpful

to graphically represent the solution space,

constraints, and the progression of the

algorithm. We begin by defining the inequality

lines from A and a over the bounds of x1.

n = len(c) # number of variables x
m = np.shape(A)[0] # number of inequality constraints
x2 = np.empty([m,2])
for i in range(0,m):
x2[i,:] = -A[i][0]/A[i][1]*np.array(lu[0]) + a[i]/A[i][1]

Now we plot a contour plot of f over the

bounds of x1 and x2 and overlay the inequality

constraints and the steps of the algorithm

stored in x.

lu_array = np.array(lu)
fig, ax = plt.subplots()
mpl.rcParams['lines.linewidth'] = 3
contour plot
X1 = np.linspace(*lu_array[0],100)
X2 = np.linspace(*lu_array[1],100)
X1, X2 = np.meshgrid(X1,X2)
F2 = -c[0]*X1 + -c[1]*X2 # negative because max hack
con = ax.contourf(X1,X2,F2)
cbar = fig.colorbar(con,ax=ax)
cbar.ax.set_ylabel('objective function')
bounds on x
un = np.array([1,1])
opts = {'c':'w','label':None,'linewidth':6}
plt.plot(lu_array[0],lu_array[1,0]*un,**opts)
plt.plot(lu_array[0],lu_array[1,1]*un,**opts)
plt.plot(lu_array[0,0]*un,lu_array[1],**opts)
plt.plot(lu_array[0,1]*un,lu_array[1],**opts)
inequality constraints
for i in range(0,m):
p, = plt.plot(lu[0],x2[i,:],c='w')

p.set_label('constraint')
steps
plt.plot(
x[:,0],x[:,1],
'-o',c='r',
clip_on=False,zorder=20,
label='simplex'

opt Optimization exe The simplex algorithm p. 5

)
plt.ylim(lu_array[1])
plt.xlabel('x_1')
plt.ylabel('x_2')
plt.legend()
plt.show()

0 2 4 6 8 10
x1

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

x
2

constraint

simplex

−15

0

15

30

45

60

75

90

ob
je

ct
iv

e
fu

n
ct

io
n

. Python code in this section was generated from a Jupyter
notebook named simplex_linear_programming.ipynb with a
python3 kernel.

