nlin.ss Nonlinear state-space models

1 A state-space model has the general form

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}\mathbf{t}} = \mathbf{f}(\mathbf{x}, \mathbf{u}, \mathbf{t}) \tag{1a}$$
$$\mathbf{u} = \tag{1b}$$

where f and g are vector-valued functions that depend on the system. Nonlinear state-space models are those for which f is a

functional of either **x** or **u**. For instance, a state variable x_1 might appear as x_1^2 or two state variables might combine as x_1x_2 or an input u_1 might enter the equations as $\log u_1$.

Autonomous and nonautonomous systems

2 An autonomous system is one for which f(x), with neither time nor input appearing explicitly. A nonautonomous system is one for which either t or u do appear explicitly in f. It turns out that we can always write nonautonomous systems as autonomous by substituting in u(t) and introducing an extra for t^4 .

3 Therefore, without loss of generality, we will focus on ways of analyzing autonomous systems.

Equilibrium

4 An equilibrium state (also called a _____) \overline{x} is one for which dx/dt = 0. In most cases, this occurs only when the input u is a constant \overline{u} and, for time-varying systems, at a given time \overline{t} . For autonomous systems, equilibrium occurs when the following holds:

This is a system of nonlinear algebraic equations, which can be challenging to solve for

nonlinear state-space models

autonomous system

nonautonomous system

4. Strogatz and Dichter, Nonlinear Dynamics and Chaos.

equilibrium state

stationary point

$\overline{x}.$ However, frequently, several solutions—that

is, equilibrium states—do exist.